English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.optimizers.NFT

class NFT(maxiter=None, maxfev=1024, disp=False, reset_interval=32)[source]

Nakanishi-Fujii-Todo algorithm.

See https://arxiv.org/abs/1903.12166

Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

Parameters
  • maxiter (Optional[int]) – Maximum number of iterations to perform.

  • maxfev (int) – Maximum number of function evaluations to perform.

  • disp (bool) – disp

  • reset_interval (int) – The minimum estimates directly once in reset_interval times.

Notes

In this optimization method, the optimization function have to satisfy three conditions written in [1]_.

References

1

K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.

__init__(maxiter=None, maxfev=1024, disp=False, reset_interval=32)[source]

Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

Parameters
  • maxiter (Optional[int]) – Maximum number of iterations to perform.

  • maxfev (int) – Maximum number of function evaluations to perform.

  • disp (bool) – disp

  • reset_interval (int) – The minimum estimates directly once in reset_interval times.

Notes

In this optimization method, the optimization function have to satisfy three conditions written in [1]_.

References

1

K. M. Nakanishi, K. Fujii, and S. Todo. 2019. Sequential minimal optimization for quantum-classical hybrid algorithms. arXiv preprint arXiv:1903.12166.

Methods

__init__([maxiter, maxfev, disp, reset_interval])

Built out using scipy framework, for details, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

get_support_level()

return support level dictionary

gradient_num_diff(x_center, f, epsilon[, …])

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

optimize(num_vars, objective_function[, …])

Perform optimization.

print_options()

Print algorithm-specific options.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Attributes

bounds_support_level

Returns bounds support level

gradient_support_level

Returns gradient support level

initial_point_support_level

Returns initial point support level

is_bounds_ignored

Returns is bounds ignored

is_bounds_required

Returns is bounds required

is_bounds_supported

Returns is bounds supported

is_gradient_ignored

Returns is gradient ignored

is_gradient_required

Returns is gradient required

is_gradient_supported

Returns is gradient supported

is_initial_point_ignored

Returns is initial point ignored

is_initial_point_required

Returns is initial point required

is_initial_point_supported

Returns is initial point supported

setting

Return setting

property bounds_support_level

Returns bounds support level

get_support_level()[source]

return support level dictionary

static gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)

We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.

Parameters
  • x_center (ndarray) – point around which we compute the gradient

  • f (func) – the function of which the gradient is to be computed.

  • epsilon (float) – the epsilon used in the numeric differentiation.

  • max_evals_grouped (int) – max evals grouped

Returns

the gradient computed

Return type

grad

property gradient_support_level

Returns gradient support level

property initial_point_support_level

Returns initial point support level

property is_bounds_ignored

Returns is bounds ignored

property is_bounds_required

Returns is bounds required

property is_bounds_supported

Returns is bounds supported

property is_gradient_ignored

Returns is gradient ignored

property is_gradient_required

Returns is gradient required

property is_gradient_supported

Returns is gradient supported

property is_initial_point_ignored

Returns is initial point ignored

property is_initial_point_required

Returns is initial point required

property is_initial_point_supported

Returns is initial point supported

optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]

Perform optimization.

Parameters
  • num_vars (int) – Number of parameters to be optimized.

  • objective_function (callable) – A function that computes the objective function.

  • gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.

  • variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.

  • initial_point (numpy.ndarray[float]) – Initial point.

Returns

point, value, nfev

point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None

Raises

ValueError – invalid input

print_options()

Print algorithm-specific options.

set_max_evals_grouped(limit)

Set max evals grouped

set_options(**kwargs)

Sets or updates values in the options dictionary.

The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.

Parameters

kwargs (dict) – options, given as name=value.

property setting

Return setting

static wrap_function(function, args)

Wrap the function to implicitly inject the args at the call of the function.

Parameters
  • function (func) – the target function

  • args (tuple) – the args to be injected

Returns

wrapper

Return type

function_wrapper