English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.components.neural_networks.GenerativeNetwork

class GenerativeNetwork[source]

Base class for generative Quantum and Classical Neural Networks.

This method should initialize the module, but raise an exception if a required component of the module is not available.

abstract __init__()[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__()

Initialize self.

get_output(quantum_instance, params, shots)

Apply quantum/classical neural network to given input and get the respective output

loss()

Loss function used for optimization

set_seed(seed)

Set seed.

train([quantum_instance, shots])

Perform one training step w.r.t to the generator’s parameters

abstract get_output(quantum_instance, params, shots)[source]

Apply quantum/classical neural network to given input and get the respective output

Parameters
  • quantum_instance (QuantumInstance) – Quantum Instance, used to run the generator circuit.

  • params (numpy.ndarray) – parameters which should be used to run the generator, if None use self._params

  • shots (int) – if not None use a number of shots that is different from the number set in quantum_instance

Returns

Neural network output

Raises

NotImplementedError – not implemented

abstract loss()[source]

Loss function used for optimization

abstract set_seed(seed)[source]

Set seed.

Parameters

seed (int) – seed

Raises

NotImplementedError – not implemented

abstract train(quantum_instance=None, shots=None)[source]

Perform one training step w.r.t to the generator’s parameters

Parameters
  • quantum_instance (QuantumInstance) – used to run generator network. Ignored for a classical network.

  • shots (int) – Number of shots for hardware or qasm execution. Ignored for classical network

Returns

generator loss and updated parameters.

Return type

dict

Raises

NotImplementedError – not implemented