English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.algorithms.SklearnSVM

class SklearnSVM(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[source]

The Sklearn SVM algorithm (classical).

This scikit-learn based SVM algorithm uses a classical approach to experiment with feature map classification problems. See also the quantum classifier QSVM.

Internally, this algorithm will run the binary classification or multiclass classification based on how many classes the data has. If the data has more than 2 classes then a multiclass_extension is required to be supplied. Aqua provides several multiclass_extensions.

Parameters
  • training_dataset (Dict[str, ndarray]) – Training dataset.

  • test_dataset (Optional[Dict[str, ndarray]]) – Testing dataset.

  • datapoints (Optional[ndarray]) – Prediction dataset.

  • gamma (Optional[int]) – Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.

  • multiclass_extension (Optional[MulticlassExtension]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.

Raises

AquaError – Multiclass extension not supplied when number of classes > 2

__init__(training_dataset, test_dataset=None, datapoints=None, gamma=None, multiclass_extension=None)[source]
Parameters
  • training_dataset (Dict[str, ndarray]) – Training dataset.

  • test_dataset (Optional[Dict[str, ndarray]]) – Testing dataset.

  • datapoints (Optional[ndarray]) – Prediction dataset.

  • gamma (Optional[int]) –

    Used as input for sklearn rbf_kernel which is used internally. See sklearn.metrics.pairwise.rbf_kernel for more information about gamma.

  • multiclass_extension (Optional[MulticlassExtension]) – If number of classes is greater than 2 then a multiclass scheme must be supplied, in the form of a multiclass extension.

Raises

AquaError – Multiclass extension not supplied when number of classes > 2

Methods

__init__(training_dataset[, test_dataset, …])

type training_dataset

Dict[str, ndarray]

load_model(file_path)

Load a model from a file path.

predict(data)

Predict using the SVM

run()

Execute the classical algorithm.

save_model(file_path)

Save the model to a file path.

test(data, labels)

Test the SVM

train(data, labels)

Train the SVM

Attributes

class_to_label

returns class to label

label_to_class

returns label to class

random

Return a numpy random.

ret

returns result

property class_to_label

returns class to label

property label_to_class

returns label to class

load_model(file_path)[source]

Load a model from a file path.

Parameters

file_path (str) – the path of the saved model.

predict(data)[source]

Predict using the SVM

Parameters

data (numpy.ndarray) – NxD array, where N is the number of data, D is the feature dimension.

Returns

predicted labels, Nx1 array

Return type

numpy.ndarray

property random

Return a numpy random.

property ret

returns result

run()

Execute the classical algorithm.

Returns

results of an algorithm.

Return type

dict

save_model(file_path)[source]

Save the model to a file path.

Parameters

file_path (str) – a path to save the model.

test(data, labels)[source]

Test the SVM

Parameters
  • data (numpy.ndarray) – NxD array, where N is the number of data, D is the feature dimension.

  • labels (numpy.ndarray) – Nx1 array, where N is the number of data

Returns

accuracy

Return type

float

train(data, labels)[source]

Train the SVM

Parameters
  • data (numpy.ndarray) – NxD array, where N is the number of data, D is the feature dimension.

  • labels (numpy.ndarray) – Nx1 array, where N is the number of data