qiskit.aqua.algorithms.NumPyMinimumEigensolver¶
-
class
NumPyMinimumEigensolver
(operator=None, aux_operators=None, filter_criterion=None)[source]¶ The Numpy Minimum Eigensolver algorithm.
- Parameters
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – Operator instanceaux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – Auxiliary operators to be evaluated at minimum eigenvaluefilter_criterion (
Optional
[Callable
[[Union
[List
,ndarray
],float
,Optional
[List
[float
]]],bool
]]) – callable that allows to filter eigenvalues/eigenstates. The minimum eigensolver is only searching over feasible states and returns an eigenstate that has the smallest eigenvalue among feasible states. The callable has the signature filter(eigenstate, eigenvalue, aux_values) and must return a boolean to indicate whether to consider this value or not. If there is no feasible element, the result can even be empty.
-
__init__
(operator=None, aux_operators=None, filter_criterion=None)[source]¶ - Parameters
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – Operator instanceaux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – Auxiliary operators to be evaluated at minimum eigenvaluefilter_criterion (
Optional
[Callable
[[Union
[List
,ndarray
],float
,Optional
[List
[float
]]],bool
]]) – callable that allows to filter eigenvalues/eigenstates. The minimum eigensolver is only searching over feasible states and returns an eigenstate that has the smallest eigenvalue among feasible states. The callable has the signature filter(eigenstate, eigenvalue, aux_values) and must return a boolean to indicate whether to consider this value or not. If there is no feasible element, the result can even be empty.
Methods
__init__
([operator, aux_operators, …])- type operator
Union
[OperatorBase
,LegacyBaseOperator
,None
]
compute_minimum_eigenvalue
([operator, …])Computes minimum eigenvalue.
run
()Execute the classical algorithm.
Whether computing the expectation value of auxiliary operators is supported.
Attributes
Returns the auxiliary operators.
returns the filter criterion if set
Return the operator.
Return a numpy random.
-
property
aux_operators
¶ Returns the auxiliary operators.
- Return type
Optional
[List
[Optional
[OperatorBase
]]]
-
compute_minimum_eigenvalue
(operator=None, aux_operators=None)[source]¶ Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‘remove’ a previous aux_operators array use an empty list here.
- Parameters
operator (
Union
[OperatorBase
,LegacyBaseOperator
,None
]) – If not None replaces operator in algorithmaux_operators (
Optional
[List
[Union
[OperatorBase
,LegacyBaseOperator
,None
]]]) – If not None replaces aux_operators in algorithm
- Return type
MinimumEigensolverResult
- Returns
MinimumEigensolverResult
-
property
filter_criterion
¶ returns the filter criterion if set
- Return type
Optional
[Callable
[[Union
[List
,ndarray
],float
,Optional
[List
[float
]]],bool
]]
-
property
operator
¶ Return the operator.
- Return type
Optional
[OperatorBase
]
-
property
random
¶ Return a numpy random.
-
run
()¶ Execute the classical algorithm.
- Returns
results of an algorithm.
- Return type
dict
-
classmethod
supports_aux_operators
()[source]¶ Whether computing the expectation value of auxiliary operators is supported.
If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.
- Return type
bool
- Returns
True if aux_operator expectations can be evaluated, False otherwise