Korean
언어
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.circuit.library.MCXRecursive

class MCXRecursive(num_ctrl_qubits=None, label=None, ctrl_state=None)[소스]

Implement the multi-controlled X gate using recursion.

Using a single ancilla qubit, the multi-controlled X gate is recursively split onto four sub-registers. This is done until we reach the 3- or 4-controlled X gate since for these we have a concrete implementation that do not require ancillas.

Create new MCX gate.

__init__(num_ctrl_qubits, label=None, ctrl_state=None)[소스]

Create new MCX gate.

Methods

__init__(num_ctrl_qubits[, label, ctrl_state])

Create new MCX gate.

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble()

Assemble a QasmQobjInstruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

c_if(classical, val)

Add classical condition on register classical and value val.

control([num_ctrl_qubits, label, ctrl_state])

Return a multi-controlled-X gate with more control lines.

copy([name])

Copy of the instruction.

get_num_ancilla_qubits(num_ctrl_qubits[, mode])

Get the number of required ancilla qubits.

inverse()

Invert this gate.

is_parameterized()

Return True .IFF.

mirror()

DEPRECATED: use instruction.reverse_ops().

power(exponent)

Creates a unitary gate as gate^exponent.

qasm()

Return a default OpenQASM string for the instruction.

repeat(n)

Creates an instruction with gate repeated n amount of times.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

to_matrix()

Return a Numpy.array for the gate unitary matrix.

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression

Attributes

ctrl_state

Return the control state of the gate as a decimal integer.

decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

definition

Return definition in terms of other basic gates.

duration

Get the duration.

label

Return gate label

num_ancilla_qubits

The number of ancilla qubits.

num_ctrl_qubits

Get number of control qubits.

params

Get parameters from base_gate.

unit

Get the time unit of duration.

add_decomposition(decomposition)

Add a decomposition of the instruction to the SessionEquivalenceLibrary.

assemble()

Assemble a QasmQobjInstruction

반환 형식

Instruction

broadcast_arguments(qargs, cargs)

Validation and handling of the arguments and its relationship.

For example, cx([q[0],q[1]], q[2]) means cx(q[0], q[2]); cx(q[1], q[2]). This method yields the arguments in the right grouping. In the given example:

in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
      [q[1], q[2]], []

The general broadcasting rules are:

  • If len(qargs) == 1:

    [q[0], q[1]] -> [q[0]],[q[1]]
    
  • If len(qargs) == 2:

    [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
    [[q[0]], [r[0], r[1]]]       -> [q[0], r[0]], [q[0], r[1]]
    [[q[0], q[1]], [r[0]]]       -> [q[0], r[0]], [q[1], r[0]]
    
  • If len(qargs) >= 3:

    [q[0], q[1]], [r[0], r[1]],  ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
    
매개변수
  • qargs (List) – List of quantum bit arguments.

  • cargs (List) – List of classical bit arguments.

반환 형식

Tuple[List, List]

반환값

A tuple with single arguments.

예외

CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.

c_if(classical, val)

Add classical condition on register classical and value val.

control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Return a multi-controlled-X gate with more control lines.

매개변수
  • num_ctrl_qubits (int) – number of control qubits.

  • label (str or None) – An optional label for the gate [Default: None]

  • ctrl_state (int or str or None) – control state expressed as integer, string (e.g. ‘110’), or None. If None, use all 1s.

반환값

controlled version of this gate.

반환 형식

ControlledGate

copy(name=None)

Copy of the instruction.

매개변수

name (str) – name to be given to the copied circuit, if None then the name stays the same.

반환값

a copy of the current instruction, with the name

updated if it was provided

반환 형식

qiskit.circuit.Instruction

property ctrl_state

Return the control state of the gate as a decimal integer.

반환 형식

int

property decompositions

Get the decompositions of the instruction from the SessionEquivalenceLibrary.

property definition

Return definition in terms of other basic gates. If the gate has open controls, as determined from self.ctrl_state, the returned definition is conjugated with X without changing the internal _definition.

반환 형식

List

property duration

Get the duration.

static get_num_ancilla_qubits(num_ctrl_qubits, mode='recursion')[소스]

Get the number of required ancilla qubits.

inverse()[소스]

Invert this gate. The MCX is its own inverse.

is_parameterized()

Return True .IFF. instruction is parameterized else False

property label

Return gate label

반환 형식

str

mirror()

DEPRECATED: use instruction.reverse_ops().

반환값

a new instruction with sub-instructions

reversed.

반환 형식

qiskit.circuit.Instruction

property num_ancilla_qubits

The number of ancilla qubits.

property num_ctrl_qubits

Get number of control qubits.

반환값

The number of control qubits for the gate.

반환 형식

int

property params

Get parameters from base_gate.

반환값

List of gate parameters.

반환 형식

list

예외

CircuitError – Controlled gate does not define a base gate

power(exponent)

Creates a unitary gate as gate^exponent.

매개변수

exponent (float) – Gate^exponent

반환값

To which to_matrix is self.to_matrix^exponent.

반환 형식

qiskit.extensions.UnitaryGate

예외

CircuitError – If Gate is not unitary

qasm()

Return a default OpenQASM string for the instruction.

Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).

repeat(n)

Creates an instruction with gate repeated n amount of times.

매개변수

n (int) – Number of times to repeat the instruction

반환값

Containing the definition.

반환 형식

qiskit.circuit.Instruction

예외

CircuitError – If n < 1.

reverse_ops()

For a composite instruction, reverse the order of sub-instructions.

This is done by recursively reversing all sub-instructions. It does not invert any gate.

반환값

a new instruction with

sub-instructions reversed.

반환 형식

qiskit.circuit.Instruction

to_matrix()

Return a Numpy.array for the gate unitary matrix.

예외

CircuitError – If a Gate subclass does not implement this method an exception will be raised when this base class method is called.

반환 형식

ndarray

property unit

Get the time unit of duration.

validate_parameter(parameter)

Gate parameters should be int, float, or ParameterExpression