Korean
언어
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.transpiler.passes.routing.sabre_swap의 소스 코드

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Routing via SWAP insertion using the SABRE method from Li et al."""

import logging
from copy import copy
from itertools import cycle
import numpy as np

from qiskit.circuit.library.standard_gates import SwapGate
from qiskit.transpiler.basepasses import TransformationPass
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.transpiler.layout import Layout
from qiskit.dagcircuit import DAGNode

logger = logging.getLogger(__name__)

EXTENDED_SET_SIZE = 20     # Size of lookahead window. TODO: set dynamically to len(current_layout)
EXTENDED_SET_WEIGHT = 0.5  # Weight of lookahead window compared to front_layer.

DECAY_RATE = 0.001         # Decay cooefficient for penalizing serial swaps.
DECAY_RESET_INTERVAL = 5   # How often to reset all decay rates to 1.


[문서]class SabreSwap(TransformationPass): r"""Map input circuit onto a backend topology via insertion of SWAPs. Implementation of the SWAP-based heuristic search from the SABRE qubit mapping paper [1] (Algorithm 1). The hueristic aims to minimize the number of lossy SWAPs inserted and the depth of the circuit. This algorithm starts from an initial layout of virtual qubits onto physical qubits, and iterates over the circuit DAG until all gates are exhausted, inserting SWAPs along the way. It only considers 2-qubit gates as only those are germane for the mapping problem (it is assumed that 3+ qubit gates are already decomposed). In each iteration, it will first check if there are any gates in the ``front_layer`` that can be directly applied. If so, it will apply them and remove them from ``front_layer``, and replenish that layer with new gates if possible. Otherwise, it will try to search for SWAPs, insert the SWAPs, and update the mapping. The search for SWAPs is restricted, in the sense that we only consider physical qubits in the neighoborhood of those qubits involved in ``front_layer``. These give rise to a ``swap_candidate_list`` which is scored according to some heuristic cost function. The best SWAP is implemented and ``current_layout`` updated. **References:** [1] Li, Gushu, Yufei Ding, and Yuan Xie. "Tackling the qubit mapping problem for NISQ-era quantum devices." ASPLOS 2019. `arXiv:1809.02573 <https://arxiv.org/pdf/1809.02573.pdf>`_ """
[문서] def __init__(self, coupling_map, heuristic='basic', seed=None): r"""SabreSwap initializer. Args: coupling_map (CouplingMap): CouplingMap of the target backend. heuristic (str): The type of heuristic to use when deciding best swap strategy ('basic' or 'lookahead' or 'decay'). seed (int): random seed used to tie-break among candidate swaps. Additional Information: The search space of possible SWAPs on physical qubits is explored by assigning a score to the layout that would result from each SWAP. The goodness of a layout is evaluated based on how viable it makes the remaining virtual gates that must be applied. A few heuristic cost functions are supported - 'basic': The sum of distances for corresponding physical qubits of interacting virtual qubits in the front_layer. .. math:: H_{basic} = \sum_{gate \in F} D[\pi(gate.q_1)][\pi(gate.q2)] - 'lookahead': This is the sum of two costs: first is the same as the basic cost. Second is the basic cost but now evaluated for the extended set as well (i.e. :math:`|E|` number of upcoming successors to gates in front_layer F). This is weighted by some amount EXTENDED_SET_WEIGHT (W) to signify that upcoming gates are less important that the front_layer. .. math:: H_{decay}=\frac{1}{\left|{F}\right|}\sum_{gate \in F} D[\pi(gate.q_1)][\pi(gate.q2)] + W*\frac{1}{\left|{E}\right|} \sum_{gate \in E} D[\pi(gate.q_1)][\pi(gate.q2)] - 'decay': This is the same as 'lookahead', but the whole cost is multiplied by a decay factor. This increases the cost if the SWAP that generated the trial layout was recently used (i.e. it penalizes increase in depth). .. math:: H_{decay} = max(decay(SWAP.q_1), decay(SWAP.q_2)) { \frac{1}{\left|{F}\right|} \sum_{gate \in F} D[\pi(gate.q_1)][\pi(gate.q2)]\\ + W *\frac{1}{\left|{E}\right|} \sum_{gate \in E} D[\pi(gate.q_1)][\pi(gate.q2)] } """ super().__init__() self.coupling_map = coupling_map self.heuristic = heuristic self.seed = seed self.applied_gates = None self.qubits_decay = None
[문서] def run(self, dag): """Run the SabreSwap pass on `dag`. Args: dag (DAGCircuit): the directed acyclic graph to be mapped. Returns: DAGCircuit: A dag mapped to be compatible with the coupling_map. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG """ if len(dag.qregs) != 1 or dag.qregs.get('q', None) is None: raise TranspilerError('Sabre swap runs on physical circuits only.') if len(dag.qubits) > self.coupling_map.size(): raise TranspilerError('More virtual qubits exist than physical.') rng = np.random.default_rng(self.seed) # Preserve input DAG's name, regs, wire_map, etc. but replace the graph. mapped_dag = dag._copy_circuit_metadata() # Assume bidirectional couplings, fixing gate direction is easy later. self.coupling_map.make_symmetric() canonical_register = dag.qregs['q'] current_layout = Layout.generate_trivial_layout(canonical_register) # A decay factor for each qubit used to heuristically penalize recently # used qubits (to encourage parallelism). self.qubits_decay = {qubit: 1 for qubit in dag.qubits} # Start algorithm from the front layer and iterate until all gates done. num_search_steps = 0 front_layer = dag.front_layer() self.applied_gates = set() while front_layer: execute_gate_list = [] # Remove as many immediately applicable gates as possible for node in front_layer: if len(node.qargs) == 2: v0, v1 = node.qargs physical_qubits = (current_layout[v0], current_layout[v1]) if physical_qubits in self.coupling_map.get_edges(): execute_gate_list.append(node) else: # Single-qubit gates as well as barriers are free execute_gate_list.append(node) if execute_gate_list: for node in execute_gate_list: new_node = _transform_gate_for_layout(node, current_layout) mapped_dag.apply_operation_back(new_node.op, new_node.qargs, new_node.cargs, new_node.condition) front_layer.remove(node) self.applied_gates.add(node) for successor in dag.quantum_successors(node): if successor.type != 'op': continue if self._is_resolved(successor, dag): front_layer.append(successor) if node.qargs: self._reset_qubits_decay() # Diagnostics logger.debug('free! %s', [(n.name, n.qargs) for n in execute_gate_list]) logger.debug('front_layer: %s', [(n.name, n.qargs) for n in front_layer]) continue # After all free gates are exhausted, heuristically find # the best swap and insert it. When two or more swaps tie # for best score, pick one randomly. extended_set = self._obtain_extended_set(dag, front_layer) swap_candidates = self._obtain_swaps(front_layer, current_layout) swap_scores = dict.fromkeys(swap_candidates, 0) for swap_qubits in swap_scores: trial_layout = current_layout.copy() trial_layout.swap(*swap_qubits) score = self._score_heuristic(self.heuristic, front_layer, extended_set, trial_layout, swap_qubits) swap_scores[swap_qubits] = score min_score = min(swap_scores.values()) best_swaps = [k for k, v in swap_scores.items() if v == min_score] best_swaps.sort(key=lambda x: (x[0].index, x[1].index)) best_swap = rng.choice(best_swaps) swap_node = DAGNode(op=SwapGate(), qargs=best_swap, type='op') swap_node = _transform_gate_for_layout(swap_node, current_layout) mapped_dag.apply_operation_back(swap_node.op, swap_node.qargs) current_layout.swap(*best_swap) num_search_steps += 1 if num_search_steps % DECAY_RESET_INTERVAL == 0: self._reset_qubits_decay() else: self.qubits_decay[best_swap[0]] += DECAY_RATE self.qubits_decay[best_swap[1]] += DECAY_RATE # Diagnostics logger.debug('SWAP Selection...') logger.debug('extended_set: %s', [(n.name, n.qargs) for n in extended_set]) logger.debug('swap scores: %s', swap_scores) logger.debug('best swap: %s', best_swap) logger.debug('qubits decay: %s', self.qubits_decay) self.property_set['final_layout'] = current_layout return mapped_dag
def _reset_qubits_decay(self): """Reset all qubit decay factors to 1 upon request (to forget about past penalizations). """ self.qubits_decay = {k: 1 for k in self.qubits_decay.keys()} def _is_resolved(self, node, dag): """Return True if all of a node's predecessors in dag are applied. """ predecessors = dag.quantum_predecessors(node) predecessors = filter(lambda x: x.type == 'op', predecessors) return all([n in self.applied_gates for n in predecessors]) def _obtain_extended_set(self, dag, front_layer): """Populate extended_set by looking ahead a fixed number of gates. For each existing element add a successor until reaching limit. """ # TODO: use layers instead of bfs_successors so long range successors aren't included. extended_set = set() bfs_successors_pernode = [dag.bfs_successors(n) for n in front_layer] node_lookahead_exhausted = [False] * len(front_layer) for i, node_successor_generator in cycle(enumerate(bfs_successors_pernode)): if all(node_lookahead_exhausted) or len(extended_set) >= EXTENDED_SET_SIZE: break try: _, successors = next(node_successor_generator) successors = list(filter(lambda x: x.type == 'op' and len(x.qargs) == 2, successors)) except StopIteration: node_lookahead_exhausted[i] = True continue successors = iter(successors) while len(extended_set) < EXTENDED_SET_SIZE: try: extended_set.add(next(successors)) except StopIteration: break return extended_set def _obtain_swaps(self, front_layer, current_layout): """Return a set of candidate swaps that affect qubits in front_layer. For each virtual qubit in front_layer, find its current location on hardware and the physical qubits in that neighborhood. Every SWAP on virtual qubits that corresponds to one of those physical couplings is a candidate SWAP. Candidate swaps are sorted so SWAP(i,j) and SWAP(j,i) are not duplicated. """ candidate_swaps = set() for node in front_layer: for virtual in node.qargs: physical = current_layout[virtual] for neighbor in self.coupling_map.neighbors(physical): virtual_neighbor = current_layout[neighbor] swap = sorted([virtual, virtual_neighbor], key=lambda q: (q.register.name, q.index)) candidate_swaps.add(tuple(swap)) return candidate_swaps def _score_heuristic(self, heuristic, front_layer, extended_set, layout, swap_qubits=None): """Return a heuristic score for a trial layout. Assuming a trial layout has resulted from a SWAP, we now assign a cost to it. The goodness of a layout is evaluated based on how viable it makes the remaining virtual gates that must be applied. """ if heuristic == 'basic': return sum(self.coupling_map.distance(*[layout[q] for q in node.qargs]) for node in front_layer) elif heuristic == 'lookahead': first_cost = self._score_heuristic('basic', front_layer, [], layout) first_cost /= len(front_layer) second_cost = self._score_heuristic('basic', extended_set, [], layout) second_cost = 0.0 if not extended_set else second_cost / len(extended_set) return first_cost + EXTENDED_SET_WEIGHT * second_cost elif heuristic == 'decay': return max(self.qubits_decay[swap_qubits[0]], self.qubits_decay[swap_qubits[1]]) * \ self._score_heuristic('lookahead', front_layer, extended_set, layout) else: raise TranspilerError('Heuristic %s not recognized.' % heuristic)
def _transform_gate_for_layout(op_node, layout): """Return node implementing a virtual op on given layout.""" mapped_op_node = copy(op_node) device_qreg = op_node.qargs[0].register premap_qargs = op_node.qargs mapped_qargs = map(lambda x: device_qreg[layout[x]], premap_qargs) mapped_op_node.qargs = list(mapped_qargs) return mapped_op_node

© Copyright 2020, Qiskit Development Team. 최종 업데이트: 2021/06/04

Built with Sphinx using a theme provided by Read the Docs.