注釈
このページは tutorials/optimization/3_minimum_eigen_optimizer.ipynb から生成されました。
IBM Quantum lab でインタラクティブに実行します。
最小固有値オプティマイザー (Minimum Eigen Optimizer)¶
はじめに¶
An interesting class of optimization problems to be addressed by quantum computing are Quadratic Unconstrained Binary Optimization (QUBO) problems. Finding the solution to a QUBO is equivalent to finding the ground state of a corresponding Ising Hamiltonian, which is an important problem not only in optimization, but also in quantum chemistry and physics. For this translation, the binary variables taking values in \(\{0, 1\}\) are replaced by spin variables taking values in \(\{-1, +1\}\), which allows to replace the resulting spin variables by Pauli Z matrices, and thus, an Ising Hamiltonian. For more details on this mapping we refer to [1].
Qiskitは、適切な``QuadraticProgram``からイジング・ハミルトニアンへの自動変換を提供します。これにより、-VQE
、-QAOA
、または-``NumpyMinimumEigensolver``(クラシカルな厳密法)などのすべての``MinimumEigenSolver``を活用できます。
Qiskit wraps the translation to an Ising Hamiltonian (in Qiskit Aqua also called Operator
), the call to an MinimumEigensolver
as well as the translation of the results back to OptimizationResult
in the MinimumEigenOptimizer
.
In the following we first illustrate the conversion from a QuadraticProgram
to an Operator
and then show how to use the MinimumEigenOptimizer
with different MinimumEigensolver
to solve a given QuadraticProgram
. The algorithms in Qiskit automatically try to convert a given problem to the supported problem class if possible, for instance, the MinimumEigenOptimizer
will automatically translate integer variables to binary variables or add a linear equality constraints as a
quadratic penalty term to the objective. It should be mentioned that Aqua will through a QiskitOptimizationError
if conversion of a quadratic program with integer variable is attempted.
The circuit depth of QAOA
potentially has to be increased with the problem size, which might be prohibitive for near-term quantum devices. A possible workaround is Recursive QAOA, as introduced in [2]. Qiskit generalizes this concept to the RecursiveMinimumEigenOptimizer
, which is introduced at the end of this tutorial.
参考文献¶
[1] A. Lucas, Ising formulations of many NP problems, Front. Phys., 12 (2014).
QUBOをオペレーターに変換する¶
[1]:
from qiskit import BasicAer
from qiskit.aqua import aqua_globals, QuantumInstance
from qiskit.aqua.algorithms import QAOA, NumPyMinimumEigensolver
from qiskit.optimization.algorithms import MinimumEigenOptimizer, RecursiveMinimumEigenOptimizer
from qiskit.optimization import QuadraticProgram
[2]:
# create a QUBO
qubo = QuadraticProgram()
qubo.binary_var('x')
qubo.binary_var('y')
qubo.binary_var('z')
qubo.minimize(linear=[1,-2,3], quadratic={('x', 'y'): 1, ('x', 'z'): -1, ('y', 'z'): 2})
print(qubo.export_as_lp_string())
\ This file has been generated by DOcplex
\ ENCODING=ISO-8859-1
\Problem name: CPLEX
Minimize
obj: x - 2 y + 3 z + [ 2 x*y - 2 x*z + 4 y*z ]/2
Subject To
Bounds
0 <= x <= 1
0 <= y <= 1
0 <= z <= 1
Binaries
x y z
End
Next we translate this QUBO into an Ising operator. This results not only in an Operator
but also in a constant offset to be taking into account to shift the resulting value.
[3]:
op, offset = qubo.to_ising()
print('offset: {}'.format(offset))
print('operator:')
print(op)
offset: 1.5
operator:
SummedOp([
-0.5 * IIZ,
0.25 * IZI,
-1.75 * ZII,
0.25 * IZZ,
-0.25 * ZIZ,
0.5 * ZZI
])
Sometimes an QuadraticProgram
might also directly be given in the form of an Operator
. For such cases, Qiskit also provides a converter from an Operator
back to a QuadraticProgram
, which we illustrate in the following.
[4]:
qp=QuadraticProgram()
qp.from_ising(op, offset, linear=True)
print(qp.export_as_lp_string())
\ This file has been generated by DOcplex
\ ENCODING=ISO-8859-1
\Problem name: CPLEX
Minimize
obj: x_0 - 2 x_1 + 3 x_2 + [ 2 x_0*x_1 - 2 x_0*x_2 + 4 x_1*x_2 ]/2
Subject To
Bounds
0 <= x_0 <= 1
0 <= x_1 <= 1
0 <= x_2 <= 1
Binaries
x_0 x_1 x_2
End
This converter allows, for instance, to translate an Operator
to a QuadraticProgram
and then solve the problem with other algorithms that are not based on the Ising Hamiltonian representation, such as the GroverOptimizer
.
Solving a QUBO with the MinimumEigenOptimizer¶
まず、使用する MinimumEigensolver
を初期化します。
[5]:
aqua_globals.random_seed = 10598
quantum_instance = QuantumInstance(BasicAer.get_backend('statevector_simulator'),
seed_simulator=aqua_globals.random_seed,
seed_transpiler=aqua_globals.random_seed)
qaoa_mes = QAOA(quantum_instance=quantum_instance, initial_point=[0., 0.])
exact_mes = NumPyMinimumEigensolver()
次に、MinimumEigensolver
を使用して MinimumEigenOptimizer
を作成します。
[6]:
qaoa = MinimumEigenOptimizer(qaoa_mes) # using QAOA
exact = MinimumEigenOptimizer(exact_mes) # using the exact classical numpy minimum eigen solver
We first use the MinimumEigenOptimizer
based on the classical exact NumPyMinimumEigensolver
to get the optimal benchmark solution for this small example.
[7]:
exact_result = exact.solve(qubo)
print(exact_result)
optimal function value: -2.0
optimal value: [0. 1. 0.]
status: SUCCESS
Next we apply the MinimumEigenOptimizer
based on QAOA
to the same problem.
[8]:
qaoa_result = qaoa.solve(qubo)
print(qaoa_result)
optimal function value: -2.0
optimal value: [0. 1. 0.]
status: SUCCESS
RecursiveMinimumEigenOptimizer¶
The RecursiveMinimumEigenOptimizer
takes a MinimumEigenOptimizer
as input and applies the recursive optimization scheme to reduce the size of the problem one variable at a time. Once the size of the generated intermediate problem is below a given threshold (min_num_vars
), the RecursiveMinimumEigenOptimizer
uses another solver (min_num_vars_optimizer
), e.g., an exact classical solver such as CPLEX or the MinimumEigenOptimizer
based on the NumPyMinimumEigensolver
.
以下では、以前に導入した 2 つの MinimumEigenOptimizer
を使用して RecursiveMinimumEigenOptimizer
を使用する方法を示します。
最初に RecursiveMinimumEigenOptimizer
を構築し、問題サイズを3つの変数から1つの変数に縮小し、最後の変数に正確なソルバーを使用します。 次に、検討された問題を最適化するために solve
を呼び出します。
[9]:
rqaoa = RecursiveMinimumEigenOptimizer(min_eigen_optimizer=qaoa, min_num_vars=1, min_num_vars_optimizer=exact)
[10]:
rqaoa_result = rqaoa.solve(qubo)
print(rqaoa_result)
optimal function value: -2.0
optimal value: [0. 1. 0.]
status: SUCCESS
[11]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
Version Information
Qiskit Software | Version |
---|---|
Qiskit | None |
Terra | 0.16.0 |
Aer | 0.7.0 |
Ignis | 0.5.0 |
Aqua | 0.8.1 |
IBM Q Provider | 0.10.0 |
System information | |
Python | 3.7.4 (default, Aug 13 2019, 15:17:50) [Clang 4.0.1 (tags/RELEASE_401/final)] |
OS | Darwin |
CPUs | 2 |
Memory (Gb) | 12.0 |
Wed Nov 11 11:22:40 2020 EST |
This code is a part of Qiskit
© Copyright IBM 2017, 2020.
This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.
[ ]: