Japanese
言語
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

注釈

このページは tutorials/operators/02_gradients_framework.ipynb から生成されました。

IBM Quantum lab でインタラクティブに実行します。

Qiskit Gradient フレームワーク

The gradient framework enables the evaluation of quantum gradients as well as functions thereof. Besides standard first order gradients of expectation values of the form

\[\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle\]

The gradient framework also supports the evaluation of second order gradients (Hessians), and the Quantum Fisher Information (QFI) of quantum states \(|\psi\left(\theta\right)\rangle\).

gradient_framework.png

インポート

[1]:
#General imports
import numpy as np

#Operator Imports
from qiskit.aqua.operators import Z, X, I, StateFn, CircuitStateFn, SummedOp
from qiskit.aqua.operators.gradients import Gradient, NaturalGradient, QFI, Hessian

#Circuit imports
from qiskit.circuit import QuantumCircuit, QuantumRegister, Parameter, ParameterVector, ParameterExpression
from qiskit.circuit.library import EfficientSU2

First Order Gradients

Given a parameterized quantum state \(|\psi\left(\theta\right)\rangle = V\left(\theta\right)|\psi\rangle\) with input state \(|\psi\rangle\), parametrized Ansatz \(V\left(\theta\right)\), and observable \(\hat{O}\left(\omega\right)=\sum_{i}\omega_i\hat{O}_i\), we want to compute…

測定演算子パラメーターに関する勾配

観測量 \(\hat{O}\left(\omega\right)\) の測定演算子の係数に関する期待値の勾配は、以下のようになります。

\[\frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\omega_i} = \langle\psi\left(\theta\right)|\hat{O}_i\left(\omega\right)|\psi\left(\theta\right)\rangle.\]

まず、量子状態 \(|\psi\left(\theta\right)\rangle\) と観測量としてのハミルトニアン :math:`H`を定義します。そして状態とハミルトニアンを、以下のように期待値を定義するオブジェクトとしてラップします。

\[\langle\psi\left(\theta\right)|H|\psi\left(\theta\right)\rangle.\]
[2]:
# Instantiate the quantum state
a = Parameter('a')
b = Parameter('b')
q = QuantumRegister(1)
qc = QuantumCircuit(q)
qc.h(q)
qc.rz(a, q[0])
qc.rx(b, q[0])

# Instantiate the Hamiltonian observable
coeff_0 = Parameter('c_0')
coeff_1 = Parameter('c_1')
H = (coeff_0*coeff_0*2)*X + coeff_1 * Z

# Combine the Hamiltonian observable and the state
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)

# Print the operator corresponding to the expectation value
print(op)
ComposedOp([
  OperatorMeasurement(SummedOp([
    2.0*c_0**2 * X,
    1.0*c_1 * Z
  ])),
  CircuitStateFn(
        ┌───┐┌───────┐┌───────┐
  q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b) ├
        └───┘└───────┘└───────┘
  )
])

勾配を評価するためのパラメーターのリストを作成します。今回は、パラメーターとして \(H\) の係数が与えられています。このリストと期待値演算子によって、勾配を表す演算子を生成します。

[3]:
# Define the coefficients w.r.t. we want to compute the gradient
obs_coeffs = [coeff_0, coeff_1]

# Define the values to be assigned to the parameters
value_dict = {coeff_0: 0.5, coeff_1: -1, a: np.pi / 4, b: np.pi}

# Convert the operator and the gradient target coefficients into the respective operator
grad = Gradient().convert(operator = op, params = obs_coeffs)

# Print the operator corresponding to the Gradient
print(grad)
ListOp([
  4.0*c_0 * ComposedOp([
    OperatorMeasurement(1.00000000000000 * Z),
    CircuitStateFn(
          ┌───┐┌───────┐┌───────┐┌───┐
    q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b) ├┤ H ├
          └───┘└───────┘└───────┘└───┘
    )
  ]),
  1.00000000000000 * ComposedOp([
    OperatorMeasurement(1.00000000000000 * Z),
    CircuitStateFn(
          ┌───┐┌───────┐┌───────┐
    q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b) ├
          └───┘└───────┘└───────┘
    )
  ])
])

All that is left to do is to assign values to the parameters and to evaluate the gradient operators.

[4]:
# Assign the parameters and evaluate the gradient
grad_result = grad.assign_parameters(value_dict).eval()
print('Gradient', grad_result)
Gradient [(1.414213562373095+1.12e-16j), 0j]

状態パラメーターに関する勾配

状態 \(|\psi\left(\theta\right)\rangle\) のパラメーターに関する期待値の勾配は以下のようになります。

\[\frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta}\]

状態 \(|\psi\left(\theta\right)\rangle\) のパラメーターに関するサンプリング確率は、以下のようになります。

\[\frac{\partial p_i}{\partial\theta} = \frac{\partial\langle\psi\left(\theta\right)|i\rangle\langle i |\psi\left(\theta\right)\rangle}{\partial\theta}.\]

状態パラメーターに関する勾配は、別の方法でも評価することができます。それぞれの方法には、長所と短所があります。

[5]:
# Define the Hamiltonian with fixed coefficients
H = 0.5 * X - 1 * Z
# Define the parameters w.r.t. we want to compute the gradients
params = [a, b]
# Define the values to be assigned to the parameters
value_dict = { a: np.pi / 4, b: np.pi}

# Combine the Hamiltonian observable and the state into an expectation value operator
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)
print(op)
ComposedOp([
  OperatorMeasurement(SummedOp([
    0.5 * X,
    -1.0 * Z
  ])),
  CircuitStateFn(
        ┌───┐┌───────┐┌───────┐
  q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b) ├
        └───┘└───────┘└───────┘
  )
])

パラメーター・シフト勾配

Given a Hermitian operator \(g\) with two unique eigenvalues \(\pm r\) which acts as generator for a parameterized quantum gate

\[G(\theta)= e^{-i\theta g}.\]

そうすると、量子勾配は固有値 \(r\) に依存するパラメーターへのシフトによって計算することができます。全ての Qiskit の標準的なパラメータ化ゲート は、以下のように \(\pi/2\) でシフトすることができます。

\[\frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta} = \left(\langle\psi\left(\theta+\pi/2\right)|\hat{O}\left(\omega\right)|\psi\left(\theta+\pi/2\right)\rangle -\partial\langle\psi\left(\theta-\pi/2\right)|\hat{O}\left(\omega\right)|\psi\left(\theta-\pi/2\right)\rangle\right) / 2.\]

確率勾配も同様に計算されます。

[6]:
# Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameters using
# the parameter shift method.
state_grad = Gradient(grad_method='param_shift').convert(operator=op, params=params)
# Print the operator corresponding to the gradient
print(state_grad)
# Assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with parameter shift', state_grad_result)
ListOp([
  SummedOp([
    0.25 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌─────────────────────────┐┌───────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a + 1.5707963267949) ├┤ RX(b) ├┤ H ├
            └───┘└─────────────────────────┘└───────┘└───┘
      )
    ]),
    -0.25 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌─────────────────────────┐┌───────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a - 1.5707963267949) ├┤ RX(b) ├┤ H ├
            └───┘└─────────────────────────┘└───────┘└───┘
      )
    ]),
    -0.5 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌─────────────────────────┐┌───────┐
      q0_0: ┤ H ├┤ RZ(a + 1.5707963267949) ├┤ RX(b) ├
            └───┘└─────────────────────────┘└───────┘
      )
    ]),
    0.5 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌─────────────────────────┐┌───────┐
      q0_0: ┤ H ├┤ RZ(a - 1.5707963267949) ├┤ RX(b) ├
            └───┘└─────────────────────────┘└───────┘
      )
    ])
  ]),
  SummedOp([
    0.25 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌─────────────────────────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b + 1.5707963267949) ├┤ H ├
            └───┘└───────┘└─────────────────────────┘└───┘
      )
    ]),
    -0.25 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌─────────────────────────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b - 1.5707963267949) ├┤ H ├
            └───┘└───────┘└─────────────────────────┘└───┘
      )
    ]),
    -0.5 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌─────────────────────────┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b + 1.5707963267949) ├
            └───┘└───────┘└─────────────────────────┘
      )
    ]),
    0.5 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌─────────────────────────┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b - 1.5707963267949) ├
            └───┘└───────┘└─────────────────────────┘
      )
    ])
  ])
])
State gradient computed with parameter shift [(-0.35355339059327373-4.175e-17j), (0.7071067811865475+4.15e-17j)]

Linear Combination of Unitaries Gradients

Unitaries can be written as \(U\left(\omega\right) = e^{iM\left(\omega\right)}\), where \(M\left(\omega\right)\) denotes a parameterized Hermitian matrix. Further, Hermitian matrices can be decomposed into weighted sums of Pauli terms, i.e., \(M\left(\omega\right) = \sum_pm_p\left(\omega\right)h_p\) with \(m_p\left(\omega\right)\in\mathbb{R}\) and \(h_p=\bigotimes\limits_{j=0}^{n-1}\sigma_{j, p}\) for \(\sigma_{j, p}\in\left\{I, X, Y, Z\right\}\) acting on the \(j^{\text{th}}\) qubit. Thus, the gradients of \(U_k\left(\omega_k\right)\) are given by \begin{equation*} \frac{\partial U_k\left(\omega_k\right)}{\partial\omega_k} = \sum\limits_pi \frac{\partial m_{k,p}\left(\omega_k\right)}{\partial\omega_k}U_k\left(\omega_k\right)h_{k_p}. \end{equation*}

Simulating physical phenomena by quantum networks で提案されている回路構成と観測を組み合わせることで、単一の量子回路の評価で勾配を計算することができます。

[7]:
# Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using
# the linear combination of unitaries method.
state_grad = Gradient(grad_method='lin_comb').convert(operator=op, params=params)

# Print the operator corresponding to the gradient
print(state_grad)

# Assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with the linear combination method', state_grad_result)
ListOp([
  SummedOp([
    0.5 * ComposedOp([
      OperatorMeasurement(ZZ) * 2.0,
      CircuitStateFn(
                                  ┌───┐          ┌───────┐┌───────┐┌───┐
                            q0_0: ┤ H ├────────■─┤ RZ(a) ├┤ RX(b) ├┤ H ├
                                  ├───┤┌─────┐ │ └─┬───┬─┘└───────┘└───┘
      work_qubit_lin_comb_grad_0: ┤ H ├┤ SDG ├─■───┤ H ├────────────────
                                  └───┘└─────┘     └───┘
      ) * 0.7071067811865476
    ]),
    -1.0 * ComposedOp([
      OperatorMeasurement(ZZ) * 2.0,
      CircuitStateFn(
                                  ┌───┐          ┌───────┐┌───────┐
                            q0_0: ┤ H ├────────■─┤ RZ(a) ├┤ RX(b) ├
                                  ├───┤┌─────┐ │ └─┬───┬─┘└───────┘
      work_qubit_lin_comb_grad_0: ┤ H ├┤ SDG ├─■───┤ H ├───────────
                                  └───┘└─────┘     └───┘
      ) * 0.7071067811865476
    ])
  ]),
  SummedOp([
    0.5 * ComposedOp([
      OperatorMeasurement(ZZ) * 2.0,
      CircuitStateFn(
                                  ┌───┐┌───────┐┌───┐┌───────┐┌───┐
                            q0_0: ┤ H ├┤ RZ(a) ├┤ X ├┤ RX(b) ├┤ H ├
                                  ├───┤└┬─────┬┘└─┬─┘└─┬───┬─┘└───┘
      work_qubit_lin_comb_grad_0: ┤ H ├─┤ SDG ├───■────┤ H ├───────
                                  └───┘ └─────┘        └───┘
      ) * 0.7071067811865476
    ]),
    -1.0 * ComposedOp([
      OperatorMeasurement(ZZ) * 2.0,
      CircuitStateFn(
                                  ┌───┐┌───────┐┌───┐┌───────┐
                            q0_0: ┤ H ├┤ RZ(a) ├┤ X ├┤ RX(b) ├
                                  ├───┤└┬─────┬┘└─┬─┘└─┬───┬─┘
      work_qubit_lin_comb_grad_0: ┤ H ├─┤ SDG ├───■────┤ H ├──
                                  └───┘ └─────┘        └───┘
      ) * 0.7071067811865476
    ])
  ])
])
State gradient computed with the linear combination method [(-0.3535533905932738-2.39e-16j), (0.7071067811865476+1.64e-16j)]

Finite Difference Gradients

Unlike the other methods, finite difference gradients are numerical estimations rather than analytical values. This implementation employs a central difference approach with \(\epsilon \ll 1\)

\[\frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta} \approx \frac{1}{2\epsilon} \left(\langle\psi\left(\theta+\epsilon\right)|\hat{O}\left(\omega\right)|\psi\left(\theta+\epsilon\right)\rangle - \partial\langle\psi\left(\theta-\epsilon\right)|\hat{O}\left(\omega\right)|\psi\left(\theta-\epsilon\right)\rangle\right).\]

確率勾配も同様に計算されます。

[8]:
# Convert the expectation value into an operator corresponding to the gradient w.r.t. the state parameter using
# the finite difference method.
state_grad = Gradient(grad_method='fin_diff').convert(operator=op, params=params)

# Print the operator corresponding to the gradient
print(state_grad)

# Assign the parameters and evaluate the gradient
state_grad_result = state_grad.assign_parameters(value_dict).eval()
print('State gradient computed with finite difference', state_grad_result)
ListOp([
  SummedOp([
    250000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌────────────────┐┌───────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a + 1.0e-6) ├┤ RX(b) ├┤ H ├
            └───┘└────────────────┘└───────┘└───┘
      )
    ]),
    -250000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌────────────────┐┌───────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a - 1.0e-6) ├┤ RX(b) ├┤ H ├
            └───┘└────────────────┘└───────┘└───┘
      )
    ]),
    -500000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌────────────────┐┌───────┐
      q0_0: ┤ H ├┤ RZ(a + 1.0e-6) ├┤ RX(b) ├
            └───┘└────────────────┘└───────┘
      )
    ]),
    500000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌────────────────┐┌───────┐
      q0_0: ┤ H ├┤ RZ(a - 1.0e-6) ├┤ RX(b) ├
            └───┘└────────────────┘└───────┘
      )
    ])
  ]),
  SummedOp([
    250000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌────────────────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b + 1.0e-6) ├┤ H ├
            └───┘└───────┘└────────────────┘└───┘
      )
    ]),
    -250000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌────────────────┐┌───┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b - 1.0e-6) ├┤ H ├
            └───┘└───────┘└────────────────┘└───┘
      )
    ]),
    -500000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌────────────────┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b + 1.0e-6) ├
            └───┘└───────┘└────────────────┘
      )
    ]),
    500000.0 * ComposedOp([
      OperatorMeasurement(Z),
      CircuitStateFn(
            ┌───┐┌───────┐┌────────────────┐
      q0_0: ┤ H ├┤ RZ(a) ├┤ RX(b - 1.0e-6) ├
            └───┘└───────┘└────────────────┘
      )
    ])
  ])
])
State gradient computed with finite difference [(-0.3535533905669581+0j), (0.7071067812098961+2.7749999999999998e-11j)]

自然勾配

A special type of first order gradient is the natural gradient which has proven itself useful in classical machine learning and is already being studied in the quantum context. This quantity represents a gradient that is ‘rescaled’ with the inverse Quantum Fisher Information matrix (QFI)

\[QFI ^{-1} \frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta}.\]

QFI の逆行列を取る代わりに、以下の問題を正則化の有無にかかわらず最小二乗ソルバーによって解くこともできます。

\[QFI x = \frac{\partial\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta}.\]

この実装は、 L-curve corner search を用いたパラメーターの自動探索による L1 正則化と L2 正則化、および QFI の対角要素の二種類の摂動をサポートしています。

自然勾配は、勾配ベースのオプティマイザーや ODE ソルバーで、標準勾配の代わりに用いることができます。

[9]:
# Besides the method to compute the circuit gradients resp. QFI, a regularization method can be chosen:
# `ridge` or `lasso` with automatic parameter search or `perturb_diag_elements` or `perturb_diag`
# which perturb the diagonal elements of the QFI.
nat_grad = NaturalGradient(grad_method='lin_comb', qfi_method='lin_comb_full', regularization='ridge').convert(
                           operator=op, params=params)

# Assign the parameters and evaluate the gradient
nat_grad_result = nat_grad.assign_parameters(value_dict).eval()
print('Natural gradient computed with linear combination of unitaries', nat_grad_result)
Natural gradient computed with linear combination of unitaries [-2.17412662  1.90236079]

Hessians (Second Order Gradients)

Four types of second order gradients are supported by the gradient framework.

  1. Gradient of an expectation value w.r.t. a coefficient of the measurement operator respectively observable \(\hat{O}\left(\omega\right)\), i.e. \(\frac{\partial^2\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\omega^2}\)

  2. Gradient of an expectation value w.r.t. a state \(|\psi\left(\theta\right)\rangle\) parameter, i.e. \(\frac{\partial^2\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta^2}\)

  3. Gradient of sampling probabilities w.r.t. a state \(|\psi\left(\theta\right)\rangle\) parameter, i.e. \(\frac{\partial^2 p_i}{\partial\theta^2} = \frac{\partial^2\langle\psi\left(\theta\right)|i\rangle\langle i|\psi\left(\theta\right)\rangle}{\partial\theta^2}\)

  4. Gradient of an expectation value w.r.t. a state \(|\psi\left(\theta\right)\rangle\) parameter and a coefficient of the measurement operator respectively observable \(\hat{O}\left(\omega\right)\), i.e. \(\frac{\partial^2\langle\psi\left(\theta\right)|\hat{O}\left(\omega\right)|\psi\left(\theta\right)\rangle}{\partial\theta\partial\omega}\)

In the following examples are given for the first two Hessian types. The remaining Hessians are evaluated analogously.

測定演算子のパラメーターに関する勾配

ここでも、量子状態 \(|\psi\left(\theta\right)\rangle\) と観測量としてのハミルトニアン :math:`H`を定義します。そして状態とハミルトニアンを、以下のように期待値を定義するオブジェクトとしてラップします。

\[\langle\psi\left(\theta\right)|H|\psi\left(\theta\right)\rangle.\]
[10]:
# Instantiate the Hamiltonian observable
coeff_0 = Parameter('c_0')
coeff_1 = Parameter('c_1')
H = coeff_0*coeff_1*coeff_1*X

# Instantiate the quantum state with two parameters
a = Parameter('a')
b = Parameter('b')

q = QuantumRegister(1)
qc = QuantumCircuit(q)
qc.h(q)
qc.rz(a, q[0])
qc.rx(b, q[0])

# Combine the Hamiltonian observable and the state
op = ~StateFn(H) @ CircuitStateFn(primitive=qc, coeff=1.)

Next, we can choose the parameters for which we want to compute second order gradients. - Given a tuple, the Hessian will evaluate the second order gradient for the two parameters. - Given a list, the Hessian will evaluate the second order gradient for all possible combinations of tuples of these parameters.

パラメーターを固定した後、ヘシアンを評価することができます。

[11]:
# Convert the operator and the hessian target coefficients into the respective operator
hessian = Hessian().convert(operator = op, params = [coeff_0, coeff_1])

# Define the values to be assigned to the parameters
value_dict = {coeff_0: 0.5, coeff_1: -1, a: np.pi / 4, b: np.pi/4}

# Assign the parameters and evaluate the Hessian w.r.t. the Hamiltonian coefficients
hessian_result = hessian.assign_parameters(value_dict).eval()
print('Hessian \n', np.real(np.array(hessian_result)))
Hessian
 [[ 0.         -1.41421356]
 [-1.41421356  0.70710678]]

Hessians w.r.t. State Parameters

[12]:
# Define parameters
params = [a, b]

# Get the operator object representing the Hessian
state_hess = Hessian(hess_method='param_shift').convert(operator=op, params=params)
# Assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print('Hessian computed using the parameter shift method\n', (np.array(hessian_result)))

# Get the operator object representing the Hessian
state_hess = Hessian(hess_method='lin_comb').convert(operator=op, params=params)
# Assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print('Hessian computed using the linear combination of unitaries method\n', (np.array(hessian_result)))

# Get the operator object representing the Hessian using finite difference
state_hess = Hessian(hess_method='fin_diff').convert(operator=op, params=params)
# Assign the parameters and evaluate the Hessian
hessian_result = state_hess.assign_parameters(value_dict).eval()
print('Hessian computed with finite difference\n', (np.array(hessian_result)))
Hessian computed using the parameter shift method
 [[-3.53553391e-01-7.6375e-17j  6.93889390e-17-1.4000e-17j]
 [ 8.32667268e-17-1.4000e-17j  0.00000000e+00+2.7750e-17j]]
Hessian computed using the linear combination of unitaries method
 [[-0.35355339-4.82e-16j  0.        +0.00e+00j]
 [ 0.        +0.00e+00j  0.        +0.00e+00j]]
Hessian computed with finite difference
 [[-3.53546143e-01-6.8750e-06j  0.00000000e+00-1.3875e-05j]
 [ 0.00000000e+00-1.3875e-05j  4.57763672e-05+2.0875e-05j]]

量子フィッシャー情報量 (QFI)

量子フィッシャー情報量は、入力状態 \(|\psi\rangle\) および パラメータ化された仮設 \(V\left(\theta\right)\) からなる、パラメータ化された量子状態 \(|\psi\left(\theta\right)\rangle = V\left(\theta\right)|\psi\rangle\) の表現能力を表す計量テンソルです。

The entries of the QFI for a pure state reads

\[QFI_{kl} = 4 * \text{Re}\left[\langle\partial_k\psi|\partial_l\psi\rangle-\langle\partial_k\psi|\psi\rangle\langle\psi|\partial_l\psi\rangle \right].\]

Circuit QFIs

パラメーター化された量子回路によって生成される量子状態の QFI の評価は、様々な方法で行うことができます。

Linear Combination Full QFI

To compute the full QFI, we use a working qubit as well as intercepting controlled gates. See e.g. Variational ansatz-based quantum simulation of imaginary time evolution.

[13]:
# Wrap the quantum circuit into a CircuitStateFn
state = CircuitStateFn(primitive=qc, coeff=1.)

# Convert the state and the parameters into the operator object that represents the QFI
qfi = QFI(qfi_method='lin_comb_full').convert(operator=state, params=params)
# Define the values for which the QFI is to be computed
values_dict = {a: np.pi / 4, b: 0.1}

# Assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('full QFI \n', np.real(np.array(qfi_result)))
full QFI
 [[ 1.00000000e+00 -1.97989899e-17]
 [-1.97989899e-17  5.00000000e-01]]

ブロック対角と対角近似

A block-diagonal resp. diagonal approximation of the QFI can be computed without additional working qubits. This implementation requires the unrolling into Pauli rotations and unparameterized Gates.

[14]:
# Convert the state and the parameters into the operator object that represents the QFI
# and set the approximation to 'block_diagonal'
qfi = QFI('overlap_block_diag').convert(operator=state, params=params)

# Assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('Block-diagonal QFI \n', np.real(np.array(qfi_result)))

# Convert the state and the parameters into the operator object that represents the QFI
# and set the approximation to 'diagonal'
qfi = QFI('overlap_diag').convert(operator=state, params=params)

# Assign the parameters and evaluate the QFI
qfi_result = qfi.assign_parameters(values_dict).eval()
print('Diagonal QFI \n', np.real(np.array(qfi_result)))
Block-diagonal QFI
 [[1.  0. ]
 [0.  0.5]]
Diagonal QFI
 [[1.  0. ]
 [0.  0.5]]

応用例: 勾配ベース最適化による VQE

追加のインポート

[15]:
# Execution Imports
from qiskit import Aer
from qiskit.aqua import QuantumInstance

# Algorithm Imports
from qiskit.aqua.algorithms import VQE
from qiskit.aqua.components.optimizers import CG

Gradient フレームワークは、勾配ベースの VQE にも利用できます。まず、ハミルトニアンと波動関数の仮設を初期化します。

[16]:
from qiskit.aqua.operators import I, X, Z
from qiskit.circuit import QuantumCircuit, ParameterVector
from scipy.optimize import minimize

# Instantiate the system Hamiltonian
h2_hamiltonian = -1.05 * (I ^ I) + 0.39 * (I ^ Z) - 0.39 * (Z ^ I) - 0.01 * (Z ^ Z) + 0.18 * (X ^ X)

# This is the target energy
h2_energy = -1.85727503

# Define the Ansatz
wavefunction = QuantumCircuit(2)
params = ParameterVector('theta', length=8)
it = iter(params)
wavefunction.ry(next(it), 0)
wavefunction.ry(next(it), 1)
wavefunction.rz(next(it), 0)
wavefunction.rz(next(it), 1)
wavefunction.cx(0, 1)
wavefunction.ry(next(it), 0)
wavefunction.ry(next(it), 1)
wavefunction.rz(next(it), 0)
wavefunction.rz(next(it), 1)

# Define the expectation value corresponding to the energy
op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction)

これで、 VQEGradientNaturalGradient のどちらを使うかを選択し、量子回路を実行するための QuantumInstance を定義して、アルゴリズムを実行することができます。

[17]:
grad = Gradient(grad_method='lin_comb')

qi_sv = QuantumInstance(Aer.get_backend('statevector_simulator'),
                        shots=1,
                        seed_simulator=2,
                        seed_transpiler=2)

#Conjugate Gradient algorithm
optimizer = CG(maxiter=50)

# Gradient callable
vqe = VQE(h2_hamiltonian, wavefunction, optimizer=optimizer, gradient=grad)

result = vqe.run(qi_sv)
print('Result:', result['optimal_value'], 'Reference:', h2_energy)
Result: -1.8404998438455793 Reference: -1.85727503
[18]:
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright

Version Information

Qiskit SoftwareVersion
Qiskit0.24.0
Terra0.16.4
Aer0.7.6
Ignis0.5.2
Aqua0.8.2
IBM Q Provider0.12.1
System information
Python3.8.8 | packaged by conda-forge | (default, Feb 20 2021, 16:22:27) [GCC 9.3.0]
OSLinux
CPUs8
Memory (Gb)31.409000396728516
Mon Mar 29 07:51:07 2021 UTC

This code is a part of Qiskit

© Copyright IBM 2017, 2021.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

[ ]: