Japanese
言語
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.circuit.library.PauliFeatureMap

class PauliFeatureMap(feature_dimension=None, reps=2, entanglement='full', paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False)[ソース]

The Pauli Expansion circuit.

The Pauli Expansion circuit is a data encoding circuit that transforms input data \(\vec{x} \in \mathbb{R}^n\) as

\[U_{\Phi(\vec{x})}=\exp\left(i\sum_{S\subseteq [n]} \phi_S(\vec{x})\prod_{i\in S} P_i\right)\]

The circuit contains reps repetitions of this transformation. The variable \(P_i \in \{ I, X, Y, Z \}\) denotes the Pauli matrices. The index \(S\) describes connectivities between different qubits or datapoints: \(S \in \{\binom{n}{k}\ combinations,\ k = 1,... n \}\). Per default the data-mapping \(\phi_S\) is

\[\begin{split}\phi_S(\vec{x}) = \begin{cases} x_0 \text{ if } k = 1 \\ \prod_{j \in S} (\pi - x_j) \text{ otherwise } \end{cases}\end{split}\]

For example, if the Pauli strings are chosen to be \(P_0 = Z\) and \(P_{0,1} = YY\) on 2 qubits and with 1 repetition using the default data-mapping, the Pauli evolution feature map is represented by:

┌───┐┌──────────────┐┌──────────┐                                             ┌───────────┐
┤ H ├┤ U1(2.0*x[0]) ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├
├───┤├──────────────┤├──────────┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───────────┤
┤ H ├┤ U1(2.0*x[1]) ├┤ RX(pi/2) ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ RX(-pi/2) ├
└───┘└──────────────┘└──────────┘└───┘└─────────────────────────────────┘└───┘└───────────┘

Please refer to ZFeatureMap for the case \(k = 1\), \(P_0 = Z\) and to ZZFeatureMap for the case \(k = 2\), \(P_0 = Z\) and \(P_{0,1} = ZZ\).

サンプル

>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZZ'])
>>> print(prep)
     ┌───┐
q_0: ┤ H ├──■───────────────────────────────────────■──
     ├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐
q_1: ┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├
     └───┘└───┘└─────────────────────────────────┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['Z', 'XX'])
>>> print(prep)
     ┌───┐┌──────────────┐┌───┐                                             ┌───┐
q_0: ┤ H ├┤ U1(2.0*x[0]) ├┤ H ├──■───────────────────────────────────────■──┤ H ├
     ├───┤├──────────────┤├───┤┌─┴─┐┌─────────────────────────────────┐┌─┴─┐├───┤
q_1: ┤ H ├┤ U1(2.0*x[1]) ├┤ H ├┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├┤ H ├
     └───┘└──────────────┘└───┘└───┘└─────────────────────────────────┘└───┘└───┘
>>> prep = PauliFeatureMap(2, reps=1, paulis=['ZY'])
>>> print(prep)
     ┌───┐┌──────────┐                                             ┌───────────┐
q_0: ┤ H ├┤ RX(pi/2) ├──■───────────────────────────────────────■──┤ RX(-pi/2) ├
     ├───┤└──────────┘┌─┴─┐┌─────────────────────────────────┐┌─┴─┐└───────────┘
q_1: ┤ H ├────────────┤ X ├┤ U1(2.0*(pi - x[0])*(pi - x[1])) ├┤ X ├─────────────
     └───┘            └───┘└─────────────────────────────────┘└───┘
>>> from qiskit.circuit.library import EfficientSU2
>>> prep = PauliFeatureMap(3, reps=3, paulis=['Z', 'YY', 'ZXZ'])
>>> wavefunction = EfficientSU2(3)
>>> classifier = prep.compose(wavefunction
>>> classifier.num_parameters
27
>>> classifier.count_ops()
OrderedDict([('cx', 39), ('rx', 36), ('u1', 21), ('h', 15), ('ry', 12), ('rz', 12)])

参照

[1]: Havlicek et al. (2018), Supervised learning with quantum enhanced feature spaces.

arXiv:1804.11326

Create a new Pauli expansion circuit.

パラメータ
  • feature_dimension (Optional[int]) – Number of qubits in the circuit.

  • reps (int) – The number of repeated circuits.

  • entanglement (Union[str, List[List[int]], Callable[[int], List[int]]]) – Specifies the entanglement structure. Refer to NLocal for detail.

  • paulis (Optional[List[str]]) – A list of strings for to-be-used paulis. If None are provided, ['Z', 'ZZ'] will be used.

  • data_map_func (Optional[Callable[[ndarray], float]]) – A mapping function for data x which can be supplied to override the default mapping from self_product().

  • parameter_prefix (str) – The prefix used if default parameters are generated.

  • insert_barriers (bool) – If True, barriers are inserted in between the evolution instructions and hadamard layers.

__init__(feature_dimension=None, reps=2, entanglement='full', paulis=None, data_map_func=None, parameter_prefix='x', insert_barriers=False)[ソース]

Create a new Pauli expansion circuit.

パラメータ
  • feature_dimension (Optional[int]) – Number of qubits in the circuit.

  • reps (int) – The number of repeated circuits.

  • entanglement (Union[str, List[List[int]], Callable[[int], List[int]]]) – Specifies the entanglement structure. Refer to NLocal for detail.

  • paulis (Optional[List[str]]) – A list of strings for to-be-used paulis. If None are provided, ['Z', 'ZZ'] will be used.

  • data_map_func (Optional[Callable[[ndarray], float]]) – A mapping function for data x which can be supplied to override the default mapping from self_product().

  • parameter_prefix (str) – The prefix used if default parameters are generated.

  • insert_barriers (bool) – If True, barriers are inserted in between the evolution instructions and hadamard layers.

Methods

__init__([feature_dimension, reps, …])

Create a new Pauli expansion circuit.

add_calibration(gate, qubits, schedule[, params])

Register a low-level, custom pulse definition for the given gate.

add_layer(other[, entanglement, front])

Append another layer to the NLocal.

add_register(*regs)

Add registers.

append(instruction[, qargs, cargs])

Append one or more instructions to the end of the circuit, modifying the circuit in place.

assign_parameters(param_dict[, inplace])

Assign parameters to the n-local circuit.

barrier(*qargs)

Apply Barrier.

bind_parameters(value_dict)

Assign numeric parameters to values yielding a new circuit.

cast(value, _type)

Best effort to cast value to type.

cbit_argument_conversion(clbit_representation)

Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.

ccx(control_qubit1, control_qubit2, target_qubit)

Apply CCXGate.

ch(control_qubit, target_qubit[, label, …])

Apply CHGate.

cls_instances()

Return the current number of instances of this class, useful for auto naming.

cls_prefix()

Return the prefix to use for auto naming.

cnot(control_qubit, target_qubit[, label, …])

Apply CXGate.

combine(rhs)

Append rhs to self if self contains compatible registers.

compose(other[, qubits, clbits, front, inplace])

Compose circuit with other circuit or instruction, optionally permuting wires.

control([num_ctrl_qubits, label, ctrl_state])

Control this circuit on num_ctrl_qubits qubits.

copy([name])

Copy the circuit.

count_ops()

Count each operation kind in the circuit.

cp(theta, control_qubit, target_qubit[, …])

Apply CPhaseGate.

crx(theta, control_qubit, target_qubit[, …])

Apply CRXGate.

cry(theta, control_qubit, target_qubit[, …])

Apply CRYGate.

crz(theta, control_qubit, target_qubit[, …])

Apply CRZGate.

cswap(control_qubit, target_qubit1, …[, …])

Apply CSwapGate.

csx(control_qubit, target_qubit[, label, …])

Apply CSXGate.

cu(theta, phi, lam, gamma, control_qubit, …)

Apply CUGate.

cu1(theta, control_qubit, target_qubit[, …])

Apply CU1Gate.

cu3(theta, phi, lam, control_qubit, target_qubit)

Apply CU3Gate.

cx(control_qubit, target_qubit[, label, …])

Apply CXGate.

cy(control_qubit, target_qubit[, label, …])

Apply CYGate.

cz(control_qubit, target_qubit[, label, …])

Apply CZGate.

dcx(qubit1, qubit2)

Apply DCXGate.

decompose()

Call a decomposition pass on this circuit, to decompose one level (shallow decompose).

delay(duration[, qarg, unit])

Apply Delay.

depth()

Return circuit depth (i.e., length of critical path).

diag_gate(diag, qubit)

Deprecated version of QuantumCircuit.diagonal.

diagonal(diag, qubit)

Attach a diagonal gate to a circuit.

draw([output, scale, filename, style, …])

Draw the quantum circuit.

extend(rhs)

Append QuantumCircuit to the right hand side if it contains compatible registers.

fredkin(control_qubit, target_qubit1, …)

Apply CSwapGate.

from_qasm_file(path)

Take in a QASM file and generate a QuantumCircuit object.

from_qasm_str(qasm_str)

Take in a QASM string and generate a QuantumCircuit object.

get_entangler_map(rep_num, block_num, …)

Get the entangler map for in the repetition rep_num and the block block_num.

get_unentangled_qubits()

Get the indices of unentangled qubits in a set.

h(qubit)

Apply HGate.

hamiltonian(operator, time, qubits[, label])

Apply hamiltonian evolution to to qubits.

has_register(register)

Test if this circuit has the register r.

i(qubit)

Apply IGate.

id(qubit)

Apply IGate.

initialize(params, qubits)

Apply initialize to circuit.

inverse()

Invert (take adjoint of) this circuit.

iso(isometry, q_input, q_ancillas_for_output)

Attach an arbitrary isometry from m to n qubits to a circuit.

isometry(isometry, q_input, …[, …])

Attach an arbitrary isometry from m to n qubits to a circuit.

iswap(qubit1, qubit2)

Apply iSwapGate.

mcmt(gate, control_qubits, target_qubits[, …])

Apply a multi-control, multi-target using a generic gate.

mcp(lam, control_qubits, target_qubit)

Apply MCPhaseGate.

mcrx(theta, q_controls, q_target[, …])

Apply Multiple-Controlled X rotation gate

mcry(theta, q_controls, q_target, q_ancillae)

Apply Multiple-Controlled Y rotation gate

mcrz(lam, q_controls, q_target[, …])

Apply Multiple-Controlled Z rotation gate

mct(control_qubits, target_qubit[, …])

Apply MCXGate.

mcu1(lam, control_qubits, target_qubit)

Apply MCU1Gate.

mcx(control_qubits, target_qubit[, …])

Apply MCXGate.

measure(qubit, cbit)

Measure quantum bit into classical bit (tuples).

measure_active([inplace])

Adds measurement to all non-idle qubits.

measure_all([inplace])

Adds measurement to all qubits.

mirror()

DEPRECATED: use circuit.reverse_ops().

ms(theta, qubits)

Apply MSGate.

num_connected_components([unitary_only])

How many non-entangled subcircuits can the circuit be factored to.

num_nonlocal_gates()

Return number of non-local gates (i.e.

num_tensor_factors()

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

num_unitary_factors()

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

p(theta, qubit)

Apply PhaseGate.

pauli_block(pauli_string)

Get the Pauli block for the feature map circuit.

pauli_evolution(pauli_string, time)

Get the evolution block for the given pauli string.

power(power[, matrix_power])

Raise this circuit to the power of power.

print_settings()

Returns information about the setting.

qasm([formatted, filename])

Return OpenQASM string.

qbit_argument_conversion(qubit_representation)

Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.

qubit_duration(*qubits)

Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits.

qubit_start_time(*qubits)

Return the start time of the first instruction, excluding delays, over the supplied qubits.

qubit_stop_time(*qubits)

Return the stop time of the last instruction, excluding delays, over the supplied qubits.

r(theta, phi, qubit)

Apply RGate.

rcccx(control_qubit1, control_qubit2, …)

Apply RC3XGate.

rccx(control_qubit1, control_qubit2, …)

Apply RCCXGate.

remove_final_measurements([inplace])

Removes final measurement on all qubits if they are present.

repeat(reps)

Repeat this circuit reps times.

reset(qubit)

Reset q.

reverse_bits()

Return a circuit with the opposite order of wires.

reverse_ops()

Reverse the circuit by reversing the order of instructions.

rx(theta, qubit[, label])

Apply RXGate.

rxx(theta, qubit1, qubit2)

Apply RXXGate.

ry(theta, qubit[, label])

Apply RYGate.

ryy(theta, qubit1, qubit2)

Apply RYYGate.

rz(phi, qubit)

Apply RZGate.

rzx(theta, qubit1, qubit2)

Apply RZXGate.

rzz(theta, qubit1, qubit2)

Apply RZZGate.

s(qubit)

Apply SGate.

sdg(qubit)

Apply SdgGate.

size()

Returns total number of gate operations in circuit.

snapshot(label[, snapshot_type, qubits, params])

Take a statevector snapshot of the internal simulator representation.

snapshot_density_matrix(label[, qubits])

Take a density matrix snapshot of simulator state.

snapshot_expectation_value(label, op, qubits)

Take a snapshot of expectation value <O> of an Operator.

snapshot_probabilities(label, qubits[, variance])

Take a probability snapshot of the simulator state.

snapshot_stabilizer(label)

Take a stabilizer snapshot of the simulator state.

snapshot_statevector(label)

Take a statevector snapshot of the simulator state.

squ(unitary_matrix, qubit[, mode, …])

Decompose an arbitrary 2*2 unitary into three rotation gates.

swap(qubit1, qubit2)

Apply SwapGate.

sx(qubit)

Apply SXGate.

sxdg(qubit)

Apply SXdgGate.

t(qubit)

Apply TGate.

tdg(qubit)

Apply TdgGate.

to_gate([parameter_map, label])

Create a Gate out of this circuit.

to_instruction([parameter_map])

Create an Instruction out of this circuit.

toffoli(control_qubit1, control_qubit2, …)

Apply CCXGate.

u(theta, phi, lam, qubit)

Apply UGate.

u1(theta, qubit)

Apply U1Gate.

u2(phi, lam, qubit)

Apply U2Gate.

u3(theta, phi, lam, qubit)

Apply U3Gate.

uc(gate_list, q_controls, q_target[, …])

Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.

ucrx(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.

ucry(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.

ucrz(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.

unitary(obj, qubits[, label])

Apply unitary gate to q.

width()

Return number of qubits plus clbits in circuit.

x(qubit[, label])

Apply XGate.

y(qubit)

Apply YGate.

z(qubit)

Apply ZGate.

Attributes

ancillas

Returns a list of ancilla bits in the order that the registers were added.

calibrations

Return calibration dictionary.

clbits

Returns a list of classical bits in the order that the registers were added.

data

Return the circuit data (instructions and context).

entanglement

Get the entanglement strategy.

entanglement_blocks

The blocks in the entanglement layers.

extension_lib

feature_dimension

Returns the feature dimension (which is equal to the number of qubits).

global_phase

Return the global phase of the circuit in radians.

header

initial_state

Return the initial state that is added in front of the n-local circuit.

insert_barriers

If barriers are inserted in between the layers or not.

instances

num_ancillas

Return the number of ancilla qubits.

num_clbits

Return number of classical bits.

num_layers

Return the number of layers in the n-local circuit.

num_parameters

Convenience function to get the number of parameter objects in the circuit.

num_parameters_settable

The number of distinct parameters.

num_qubits

Returns the number of qubits in this circuit.

ordered_parameters

The parameters used in the underlying circuit.

parameter_bounds

The parameter bounds for the unbound parameters in the circuit.

parameters

Get the Parameter objects in the circuit.

paulis

The Pauli strings used in the entanglement of the qubits.

preferred_init_points

The initial points for the parameters.

prefix

qregs

A list of the quantum registers associated with the circuit.

qubits

Returns a list of quantum bits in the order that the registers were added.

reps

The number of times rotation and entanglement block are repeated.

rotation_blocks

The blocks in the rotation layers.

add_calibration(gate, qubits, schedule, params=None)

Register a low-level, custom pulse definition for the given gate.

パラメータ
  • gate (Union[Gate, str]) – Gate information.

  • qubits (Union[int, Tuple[int]]) – List of qubits to be measured.

  • schedule (Schedule) – Schedule information.

  • params (Optional[List[Union[float, Parameter]]]) – A list of parameters.

例外

Exception – if the gate is of type string and params is None.

add_layer(other, entanglement=None, front=False)

Append another layer to the NLocal.

パラメータ
  • other (Union[NLocal, Instruction, QuantumCircuit]) – The layer to compose, can be another NLocal, an Instruction or Gate, or a QuantumCircuit.

  • entanglement (Union[List[int], str, List[List[int]], None]) – The entanglement or qubit indices.

  • front (bool) – If True, other is appended to the front, else to the back.

戻り値の型

NLocal

戻り値

self, such that chained composes are possible.

例外

TypeError – If other is not compatible, i.e. is no Instruction and does not have a to_instruction method.

add_register(*regs)

Add registers.

property ancillas

Returns a list of ancilla bits in the order that the registers were added.

append(instruction, qargs=None, cargs=None)

Append one or more instructions to the end of the circuit, modifying the circuit in place. Expands qargs and cargs.

パラメータ
  • instruction (qiskit.circuit.Instruction) – Instruction instance to append

  • qargs (list(argument)) – qubits to attach instruction to

  • cargs (list(argument)) – clbits to attach instruction to

戻り値

a handle to the instruction that was just added

戻り値の型

qiskit.circuit.Instruction

例外
  • CircuitError – if object passed is a subclass of Instruction

  • CircuitError – if object passed is neither subclass nor an instance of Instruction

assign_parameters(param_dict, inplace=False)

Assign parameters to the n-local circuit.

This method also supports passing a list instead of a dictionary. If a list is passed, the list must have the same length as the number of unbound parameters in the circuit. The parameters are assigned in the order of the parameters in ordered_parameters().

戻り値の型

Optional[QuantumCircuit]

戻り値

A copy of the NLocal circuit with the specified parameters.

例外

AttributeError – If the parameters are given as list and do not match the number of parameters.

barrier(*qargs)

Apply Barrier. If qargs is None, applies to all.

bind_parameters(value_dict)

Assign numeric parameters to values yielding a new circuit.

To assign new Parameter objects or bind the values in-place, without yielding a new circuit, use the assign_parameters() method.

パラメータ

value_dict (dict) – {parameter: value, …}

例外
  • CircuitError – If value_dict contains parameters not present in the circuit

  • TypeError – If value_dict contains a ParameterExpression in the values.

戻り値

copy of self with assignment substitution.

戻り値の型

QuantumCircuit

property calibrations

Return calibration dictionary.

The custom pulse definition of a given gate is of the form

{『gate_name』: {(qubits, params): schedule}}

static cast(value, _type)

Best effort to cast value to type. Otherwise, returns the value.

cbit_argument_conversion(clbit_representation)

Converts several classical bit representations (such as indexes, range, etc.) into a list of classical bits.

パラメータ

clbit_representation (Object) – representation to expand

戻り値

Where each tuple is a classical bit.

戻り値の型

List(tuple)

ccx(control_qubit1, control_qubit2, target_qubit)

Apply CCXGate.

ch(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CHGate.

property clbits

Returns a list of classical bits in the order that the registers were added.

classmethod cls_instances()

Return the current number of instances of this class, useful for auto naming.

classmethod cls_prefix()

Return the prefix to use for auto naming.

cnot(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CXGate.

combine(rhs)

Append rhs to self if self contains compatible registers.

Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.

Return self + rhs as a new object.

パラメータ

rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.

戻り値

Returns a new QuantumCircuit object

戻り値の型

QuantumCircuit

例外

QiskitError – if the rhs circuit is not compatible

compose(other, qubits=None, clbits=None, front=False, inplace=False)

Compose circuit with other circuit or instruction, optionally permuting wires.

other can be narrower or of equal width to self.

パラメータ
  • other (qiskit.circuit.Instruction or QuantumCircuit or BaseOperator) – (sub)circuit to compose onto self.

  • qubits (list[Qubit|int]) – qubits of self to compose onto.

  • clbits (list[Clbit|int]) – clbits of self to compose onto.

  • front (bool) – If True, front composition will be performed (not implemented yet).

  • inplace (bool) – If True, modify the object. Otherwise return composed circuit.

戻り値

the composed circuit (returns None if inplace==True).

戻り値の型

QuantumCircuit

例外
  • CircuitError – if composing on the front.

  • QiskitError – if other is wider or there are duplicate edge mappings.

サンプル

>>> lhs.compose(rhs, qubits=[3, 2], inplace=True)
            ┌───┐                   ┌─────┐                ┌───┐
lqr_1_0: ───┤ H ├───    rqr_0: ──■──┤ Tdg ├    lqr_1_0: ───┤ H ├───────────────
            ├───┤              ┌─┴─┐└─────┘                ├───┤
lqr_1_1: ───┤ X ├───    rqr_1: ┤ X ├───────    lqr_1_1: ───┤ X ├───────────────
         ┌──┴───┴──┐           └───┘                    ┌──┴───┴──┐┌───┐
lqr_1_2: ┤ U1(0.1) ├  +                     =  lqr_1_2: ┤ U1(0.1) ├┤ X ├───────
         └─────────┘                                    └─────────┘└─┬─┘┌─────┐
lqr_2_0: ─────■─────                           lqr_2_0: ─────■───────■──┤ Tdg ├
            ┌─┴─┐                                          ┌─┴─┐        └─────┘
lqr_2_1: ───┤ X ├───                           lqr_2_1: ───┤ X ├───────────────
            └───┘                                          └───┘
lcr_0: 0 ═══════════                           lcr_0: 0 ═══════════════════════

lcr_1: 0 ═══════════                           lcr_1: 0 ═══════════════════════
control(num_ctrl_qubits=1, label=None, ctrl_state=None)

Control this circuit on num_ctrl_qubits qubits.

パラメータ
  • num_ctrl_qubits (int) – The number of control qubits.

  • label (str) – An optional label to give the controlled operation for visualization.

  • ctrl_state (str or int) – The control state in decimal or as a bitstring (e.g. 『111』). If None, use 2**num_ctrl_qubits - 1.

戻り値

The controlled version of this circuit.

戻り値の型

QuantumCircuit

例外

CircuitError – If the circuit contains a non-unitary operation and cannot be controlled.

copy(name=None)

Copy the circuit.

パラメータ

name (str) – name to be given to the copied circuit. If None, then the name stays the same

戻り値

a deepcopy of the current circuit, with the specified name

戻り値の型

QuantumCircuit

count_ops()

Count each operation kind in the circuit.

戻り値

a breakdown of how many operations of each kind, sorted by amount.

戻り値の型

OrderedDict

cp(theta, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CPhaseGate.

crx(theta, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CRXGate.

cry(theta, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CRYGate.

crz(theta, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CRZGate.

cswap(control_qubit, target_qubit1, target_qubit2, label=None, ctrl_state=None)

Apply CSwapGate.

csx(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CSXGate.

cu(theta, phi, lam, gamma, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CUGate.

cu1(theta, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CU1Gate.

cu3(theta, phi, lam, control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CU3Gate.

cx(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CXGate.

cy(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CYGate.

cz(control_qubit, target_qubit, label=None, ctrl_state=None)

Apply CZGate.

property data

Return the circuit data (instructions and context).

戻り値

a list-like object containing the tuples for the circuit’s data.

Each tuple is in the format (instruction, qargs, cargs), where instruction is an Instruction (or subclass) object, qargs is a list of Qubit objects, and cargs is a list of Clbit objects.

戻り値の型

QuantumCircuitData

dcx(qubit1, qubit2)

Apply DCXGate.

decompose()

Call a decomposition pass on this circuit, to decompose one level (shallow decompose).

戻り値

a circuit one level decomposed

戻り値の型

QuantumCircuit

delay(duration, qarg=None, unit='dt')

Apply Delay. If qarg is None, applies to all qubits. When applying to multiple qubits, delays with the same duration will be created.

パラメータ
  • duration (int or float) – duration of the delay.

  • qarg (Object) – qubit argument to apply this delay.

  • unit (str) – unit of the duration. Supported units: 『s』, 『ms』, 『us』, 『ns』, 『ps』, 『dt』. Default is dt, i.e. integer time unit depending on the target backend.

戻り値

the attached delay instruction.

戻り値の型

qiskit.Instruction

例外

CircuitError – if arguments have bad format.

depth()

Return circuit depth (i.e., length of critical path). This does not include compiler or simulator directives such as 『barrier』 or 『snapshot』.

戻り値

Depth of circuit.

戻り値の型

int

メモ

The circuit depth and the DAG depth need not be the same.

diag_gate(diag, qubit)

Deprecated version of QuantumCircuit.diagonal.

diagonal(diag, qubit)

Attach a diagonal gate to a circuit.

The decomposition is based on Theorem 7 given in 「Synthesis of Quantum Logic Circuits」 by Shende et al. (https://arxiv.org/pdf/quant-ph/0406176.pdf).

パラメータ
  • diag (list) – list of the 2^k diagonal entries (for a diagonal gate on k qubits). Must contain at least two entries

  • qubit (QuantumRegister|list) – list of k qubits the diagonal is acting on (the order of the qubits specifies the computational basis in which the diagonal gate is provided: the first element in diag acts on the state where all the qubits in q are in the state 0, the second entry acts on the state where all the qubits q[1],…,q[k-1] are in the state zero and q[0] is in the state 1, and so on)

戻り値

the diagonal gate which was attached to the circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the list of the diagonal entries or the qubit list is in bad format; if the number of diagonal entries is not 2^k, where k denotes the number of qubits

draw(output=None, scale=None, filename=None, style=None, interactive=False, plot_barriers=True, reverse_bits=False, justify=None, vertical_compression='medium', idle_wires=True, with_layout=True, fold=None, ax=None, initial_state=False, cregbundle=True)

Draw the quantum circuit.

text: ASCII art TextDrawing that can be printed in the console.

latex: high-quality images compiled via LaTeX.

latex_source: raw uncompiled LaTeX output.

matplotlib: images with color rendered purely in Python.

パラメータ
  • output (str) – Select the output method to use for drawing the circuit. Valid choices are text, latex, latex_source, or mpl. By default the 『text』 drawer is used unless a user config file has an alternative backend set as the default. If the output kwarg is set, that backend will always be used over the default in a user config file.

  • scale (float) – scale of image to draw (shrink if < 1)

  • filename (str) – file path to save image to

  • style (dict or str) – dictionary of style or file name of style file. This option is only used by the mpl output type. If a str is passed in that is the path to a json file which contains a dictionary of style, then that will be opened, parsed, and used as the input dict. See: Style Dict Doc for more information on the contents.

  • interactive (bool) – when set true show the circuit in a new window (for mpl this depends on the matplotlib backend being used supporting this). Note when used with either the text or the latex_source output type this has no effect and will be silently ignored.

  • reverse_bits (bool) – When set to True, reverse the bit order inside registers for the output visualization.

  • plot_barriers (bool) – Enable/disable drawing barriers in the output circuit. Defaults to True.

  • justify (string) – Options are left, right or none. If anything else is supplied it defaults to left justified. It refers to where gates should be placed in the output circuit if there is an option. none results in each gate being placed in its own column.

  • vertical_compression (string) – high, medium or low. It merges the lines generated by the text output so the drawing will take less vertical room. Default is medium. Only used by the text output, will be silently ignored otherwise.

  • idle_wires (bool) – Include idle wires (wires with no circuit elements) in output visualization. Default is True.

  • with_layout (bool) – Include layout information, with labels on the physical layout. Default is True.

  • fold (int) – Sets pagination. It can be disabled using -1. In text, sets the length of the lines. This is useful when the drawing does not fit in the console. If None (default), it will try to guess the console width using shutil. get_terminal_size(). However, if running in jupyter, the default line length is set to 80 characters. In mpl is the number of (visual) layers before folding. Default is 25.

  • ax (matplotlib.axes.Axes) – An optional Axes object to be used for the visualization output. If none is specified, a new matplotlib Figure will be created and used. Additionally, if specified, there will be no returned Figure since it is redundant. This is only used when the output kwarg is set to use the mpl backend. It will be silently ignored with all other outputs.

  • initial_state (bool) – Optional. Adds |0> in the beginning of the wire. Only used by the text, latex and latex_source outputs. Default: False.

  • cregbundle (bool) – Optional. If set True bundle classical registers. Not used by the matplotlib output. Default: True.

戻り値

PIL.Image or matplotlib.figure or str or TextDrawing:

  • PIL.Image (output=』latex』)

    an in-memory representation of the image of the circuit diagram.

  • matplotlib.figure.Figure (output=』mpl』)

    a matplotlib figure object for the circuit diagram.

  • str (output=』latex_source』)

    The LaTeX source code for visualizing the circuit diagram.

  • TextDrawing (output=』text』)

    A drawing that can be printed as ASCII art.

例外
  • VisualizationError – when an invalid output method is selected

  • ImportError – when the output methods require non-installed libraries

Style Dict Details

The style dict kwarg contains numerous options that define the style of the output circuit visualization. The style dict is only used by the mpl output. The options available in the style dict are defined below:

パラメータ
  • name (str) – The name of the style. The name can be set to 『iqx』, 『bw』, or 『default』. This overrides the setting in the 『~/.qiskit/settings.conf』 file.

  • textcolor (str) – The color code to use for text. Defaults to 『#000000』

  • subtextcolor (str) – The color code to use for subtext. Defaults to 『#000000』

  • linecolor (str) – The color code to use for lines. Defaults to 『#000000』

  • creglinecolor (str) – The color code to use for classical register lines. Defaults to 『#778899』

  • gatetextcolor (str) – The color code to use for gate text. Defaults to 『#000000』

  • gatefacecolor (str) – The color code to use for gates. Defaults to 『#ffffff』

  • barrierfacecolor (str) – The color code to use for barriers. Defaults to 『#bdbdbd』

  • backgroundcolor (str) – The color code to use for the background. Defaults to 『#ffffff』

  • fontsize (int) – The font size to use for text. Defaults to 13.

  • subfontsize (int) – The font size to use for subtext. Defaults to 8.

  • displaytext (dict) –

    A dictionary of the text to use for each element type in the output visualization. The default values are:

    {
        'id': 'id',
        'u0': 'U_0',
        'u1': 'U_1',
        'u2': 'U_2',
        'u3': 'U_3',
        'x': 'X',
        'y': 'Y',
        'z': 'Z',
        'h': 'H',
        's': 'S',
        'sdg': 'S^\dagger',
        't': 'T',
        'tdg': 'T^\dagger',
        'rx': 'R_x',
        'ry': 'R_y',
        'rz': 'R_z',
        'reset': '\left|0\right\rangle'
    }
    

    You must specify all the necessary values if using this. There is no provision for passing an incomplete dict in.

  • displaycolor (dict) –

    The color codes to use for each circuit element in the form (gate_color, text_color). The default values are:

    {
        'u1': ('#FA74A6', '#000000'),
        'u2': ('#FA74A6', '#000000'),
        'u3': ('#FA74A6', '#000000'),
        'id': ('#05BAB6', '#000000'),
        'x': ('#05BAB6', '#000000'),
        'y': ('#05BAB6', '#000000'),
        'z': ('#05BAB6', '#000000'),
        'h': ('#6FA4FF', '#000000'),
        'cx': ('#6FA4FF', '#000000'),
        'cy': ('#6FA4FF', '#000000'),
        'cz': ('#6FA4FF', '#000000'),
        'swap': ('#6FA4FF', '#000000'),
        's': ('#6FA4FF', '#000000'),
        'sdg': ('#6FA4FF', '#000000'),
        'dcx': ('#6FA4FF', '#000000'),
        'iswap': ('#6FA4FF', '#000000'),
        't': ('#BB8BFF', '#000000'),
        'tdg': ('#BB8BFF', '#000000'),
        'r': ('#BB8BFF', '#000000'),
        'rx': ('#BB8BFF', '#000000'),
        'ry': ('#BB8BFF', '#000000'),
        'rz': ('#BB8BFF', '#000000'),
        'rxx': ('#BB8BFF', '#000000'),
        'ryy': ('#BB8BFF', '#000000'),
        'rzx': ('#BB8BFF', '#000000'),
        'reset': ('#000000', #FFFFFF'),
        'target': ('#FFFFFF, '#FFFFFF'),
        'measure': ('#000000', '#FFFFFF'),
        'ccx': ('#BB8BFF', '#000000'),
        'cdcx': ('#BB8BFF', '#000000'),
        'ccdcx': ('#BB8BFF', '#000000'),
        'cswap': ('#BB8BFF', '#000000'),
        'ccswap': ('#BB8BFF', '#000000'),
        'mcx': ('#BB8BFF', '#000000'),
        'mcx_gray': ('#BB8BFF', '#000000),
        'u': ('#BB8BFF', '#000000'),
        'p': ('#BB8BFF', '#000000'),
        'sx': ('#BB8BFF', '#000000'),
        'sxdg': ('#BB8BFF', '#000000')
    }
    

    Colors can also be entered without the text color, such as 『u1』: 『#FA74A6』, in which case the text color will always be 『gatetextcolor』. The 『displaycolor』 dict can contain any number of elements from one to the entire dict above.

  • latexdrawerstyle (bool) – When set to True, enable LaTeX mode, which will draw gates like the latex output modes.

  • usepiformat (bool) – When set to True, use radians for output.

  • fold (int) – The number of circuit elements to fold the circuit at. Defaults to 20.

  • cregbundle (bool) – If set True, bundle classical registers

  • showindex (bool) – If set True, draw an index.

  • compress (bool) – If set True, draw a compressed circuit.

  • figwidth (int) – The maximum width (in inches) for the output figure.

  • dpi (int) – The DPI to use for the output image. Defaults to 150.

  • margin (list) – A list of margin values to adjust spacing around output image. Takes a list of 4 ints: [x left, x right, y bottom, y top].

  • creglinestyle (str) – The style of line to use for classical registers. Choices are 『solid』, 『doublet』, or any valid matplotlib linestyle kwarg value. Defaults to doublet

property entanglement

Get the entanglement strategy.

戻り値の型

Union[str, List[str], List[List[str]], List[int], List[List[int]], List[List[List[int]]], List[List[List[List[int]]]], Callable[[int], str], Callable[[int], List[List[int]]]]

戻り値

The entanglement strategy, see get_entangler_map() for more detail on how the format is interpreted.

property entanglement_blocks

The blocks in the entanglement layers.

戻り値

The blocks in the entanglement layers.

extend(rhs)

Append QuantumCircuit to the right hand side if it contains compatible registers.

Two circuits are compatible if they contain the same registers or if they contain different registers with unique names. The returned circuit will contain all unique registers between both circuits.

Modify and return self.

パラメータ

rhs (QuantumCircuit) – The quantum circuit to append to the right hand side.

戻り値

Returns this QuantumCircuit object (which has been modified)

戻り値の型

QuantumCircuit

例外

QiskitError – if the rhs circuit is not compatible

property feature_dimension

Returns the feature dimension (which is equal to the number of qubits).

戻り値の型

int

戻り値

The feature dimension of this feature map.

fredkin(control_qubit, target_qubit1, target_qubit2)

Apply CSwapGate.

static from_qasm_file(path)

Take in a QASM file and generate a QuantumCircuit object.

パラメータ

path (str) – Path to the file for a QASM program

戻り値

The QuantumCircuit object for the input QASM

戻り値の型

QuantumCircuit

static from_qasm_str(qasm_str)

Take in a QASM string and generate a QuantumCircuit object.

パラメータ

qasm_str (str) – A QASM program string

戻り値

The QuantumCircuit object for the input QASM

戻り値の型

QuantumCircuit

get_entangler_map(rep_num, block_num, num_block_qubits)

Get the entangler map for in the repetition rep_num and the block block_num.

The entangler map for the current block is derived from the value of self.entanglement. Below the different cases are listed, where i and j denote the repetition number and the block number, respectively, and n the number of qubits in the block.

entanglement type | entangler map ——————————-+——————————————————– None | [[0, …, n - 1]] str (e.g 『full』) | the specified connectivity on n qubits List[int] | [entanglement] List[List[int]] | entanglement List[List[List[int]]] | entanglement[i] List[List[List[List[int]]]] | entanglement[i][j] List[str] | the connectivity specified in entanglement[i] List[List[str]] | the connectivity specified in entanglement[i][j] Callable[int, str] | same as List[str] Callable[int, List[List[int]]] | same as List[List[List[int]]]

Note that all indices are to be taken modulo the length of the array they act on, i.e. no out-of-bounds index error will be raised but we re-iterate from the beginning of the list.

パラメータ
  • rep_num (int) – The current repetition we are in.

  • block_num (int) – The block number within the entanglement layers.

  • num_block_qubits (int) – The number of qubits in the block.

戻り値の型

List[List[int]]

戻り値

The entangler map for the current block in the current repetition.

例外

ValueError – If the value of entanglement could not be cast to a corresponding entangler map.

get_unentangled_qubits()

Get the indices of unentangled qubits in a set.

戻り値の型

Set[int]

戻り値

The unentangled qubits.

property global_phase

Return the global phase of the circuit in radians.

h(qubit)

Apply HGate.

hamiltonian(operator, time, qubits, label=None)

Apply hamiltonian evolution to to qubits.

has_register(register)

Test if this circuit has the register r.

パラメータ

register (Register) – a quantum or classical register.

戻り値

True if the register is contained in this circuit.

戻り値の型

bool

i(qubit)

Apply IGate.

id(qubit)

Apply IGate.

property initial_state

Return the initial state that is added in front of the n-local circuit.

戻り値の型

Any

戻り値

The initial state.

initialize(params, qubits)

Apply initialize to circuit.

property insert_barriers

If barriers are inserted in between the layers or not.

戻り値の型

bool

戻り値

True, if barriers are inserted in between the layers, False if not.

inverse()

Invert (take adjoint of) this circuit.

This is done by recursively inverting all gates.

戻り値

the inverted circuit

戻り値の型

QuantumCircuit

例外

CircuitError – if the circuit cannot be inverted.

サンプル

input:

┌───┐

q_0: ┤ H ├─────■──────

└───┘┌────┴─────┐

q_1: ─────┤ RX(1.57) ├

└──────────┘

output:

┌───┐

q_0: ──────■──────┤ H ├

┌─────┴─────┐└───┘

q_1: ┤ RX(-1.57) ├─────

└───────────┘

iso(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)

Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.

パラメータ
  • isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).

  • q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).

  • q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.

  • q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.

  • q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.

戻り値

the isometry is attached to the quantum circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.

isometry(isometry, q_input, q_ancillas_for_output, q_ancillas_zero=None, q_ancillas_dirty=None)

Attach an arbitrary isometry from m to n qubits to a circuit. In particular, this allows to attach arbitrary unitaries on n qubits (m=n) or to prepare any state on n qubits (m=0). The decomposition used here was introduced by Iten et al. in https://arxiv.org/abs/1501.06911.

パラメータ
  • isometry (ndarray) – an isometry from m to n qubits, i.e., a (complex) ndarray of dimension 2^n×2^m with orthonormal columns (given in the computational basis specified by the order of the ancillas and the input qubits, where the ancillas are considered to be more significant than the input qubits.).

  • q_input (QuantumRegister|list[Qubit]) – list of m qubits where the input to the isometry is fed in (empty list for state preparation).

  • q_ancillas_for_output (QuantumRegister|list[Qubit]) – list of n-m ancilla qubits that are used for the output of the isometry and which are assumed to start in the zero state. The qubits are listed with increasing significance.

  • q_ancillas_zero (QuantumRegister|list[Qubit]) – list of ancilla qubits which are assumed to start in the zero state. Default is q_ancillas_zero = None.

  • q_ancillas_dirty (QuantumRegister|list[Qubit]) – list of ancilla qubits which can start in an arbitrary state. Default is q_ancillas_dirty = None.

戻り値

the isometry is attached to the quantum circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the array is not an isometry of the correct size corresponding to the provided number of qubits.

iswap(qubit1, qubit2)

Apply iSwapGate.

mcmt(gate, control_qubits, target_qubits, ancilla_qubits=None, mode='noancilla', *, single_control_gate_fun=None, q_controls=None, q_ancillae=None, q_targets=None)

Apply a multi-control, multi-target using a generic gate.

This can also be used to implement a generic multi-control gate, as the target could also be of length 1.

mcp(lam, control_qubits, target_qubit)

Apply MCPhaseGate.

mcrx(theta, q_controls, q_target, use_basis_gates=False)

Apply Multiple-Controlled X rotation gate

パラメータ
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcrx gate on.

  • theta (float) – angle theta

  • q_controls (list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • use_basis_gates (bool) – use p, u, cx

例外

QiskitError – parameter errors

mcry(theta, q_controls, q_target, q_ancillae, mode=None, use_basis_gates=False)

Apply Multiple-Controlled Y rotation gate

パラメータ
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcry gate on.

  • theta (float) – angle theta

  • q_controls (list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • q_ancillae (QuantumRegister or tuple(QuantumRegister, int)) – The list of ancillary qubits.

  • mode (string) – The implementation mode to use

  • use_basis_gates (bool) – use p, u, cx

例外

QiskitError – parameter errors

mcrz(lam, q_controls, q_target, use_basis_gates=False)

Apply Multiple-Controlled Z rotation gate

パラメータ
  • self (QuantumCircuit) – The QuantumCircuit object to apply the mcrz gate on.

  • lam (float) – angle lambda

  • q_controls (list(Qubit)) – The list of control qubits

  • q_target (Qubit) – The target qubit

  • use_basis_gates (bool) – use p, u, cx

例外

QiskitError – parameter errors

mct(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')

Apply MCXGate.

mcu1(lam, control_qubits, target_qubit)

Apply MCU1Gate.

mcx(control_qubits, target_qubit, ancilla_qubits=None, mode='noancilla')

Apply MCXGate.

The multi-cX gate can be implemented using different techniques, which use different numbers of ancilla qubits and have varying circuit depth. These modes are: - 『no-ancilla』: Requires 0 ancilla qubits. - 『recursion』: Requires 1 ancilla qubit if more than 4 controls are used, otherwise 0. - 『v-chain』: Requires 2 less ancillas than the number of control qubits. - 『v-chain-dirty』: Same as for the clean ancillas (but the circuit will be longer).

measure(qubit, cbit)

Measure quantum bit into classical bit (tuples).

パラメータ
  • qubit (QuantumRegister|list|tuple) – quantum register

  • cbit (ClassicalRegister|list|tuple) – classical register

戻り値

the attached measure instruction.

戻り値の型

qiskit.Instruction

例外

CircuitError – if qubit is not in this circuit or bad format; if cbit is not in this circuit or not creg.

measure_active(inplace=True)

Adds measurement to all non-idle qubits. Creates a new ClassicalRegister with a size equal to the number of non-idle qubits being measured.

Returns a new circuit with measurements if inplace=False.

パラメータ

inplace (bool) – All measurements inplace or return new circuit.

戻り値

Returns circuit with measurements when inplace = False.

戻り値の型

QuantumCircuit

measure_all(inplace=True)

Adds measurement to all qubits. Creates a new ClassicalRegister with a size equal to the number of qubits being measured.

Returns a new circuit with measurements if inplace=False.

パラメータ

inplace (bool) – All measurements inplace or return new circuit.

戻り値

Returns circuit with measurements when inplace = False.

戻り値の型

QuantumCircuit

mirror()

DEPRECATED: use circuit.reverse_ops().

戻り値

the reversed circuit.

戻り値の型

QuantumCircuit

ms(theta, qubits)

Apply MSGate.

property num_ancillas

Return the number of ancilla qubits.

property num_clbits

Return number of classical bits.

num_connected_components(unitary_only=False)

How many non-entangled subcircuits can the circuit be factored to.

パラメータ

unitary_only (bool) – Compute only unitary part of graph.

戻り値

Number of connected components in circuit.

戻り値の型

int

property num_layers

Return the number of layers in the n-local circuit.

戻り値の型

int

戻り値

The number of layers in the circuit.

num_nonlocal_gates()

Return number of non-local gates (i.e. involving 2+ qubits).

Conditional nonlocal gates are also included.

property num_parameters

Convenience function to get the number of parameter objects in the circuit.

property num_parameters_settable

The number of distinct parameters.

property num_qubits

Returns the number of qubits in this circuit.

戻り値の型

int

戻り値

The number of qubits.

num_tensor_factors()

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

メモ

This is here for backwards compatibility, and will be removed in a future release of Qiskit. You should call num_unitary_factors instead.

num_unitary_factors()

Computes the number of tensor factors in the unitary (quantum) part of the circuit only.

property ordered_parameters

The parameters used in the underlying circuit.

This includes float values and duplicates.

サンプル

>>> # prepare circuit ...
>>> print(nlocal)
     ┌───────┐┌──────────┐┌──────────┐┌──────────┐
q_0: ┤ Ry(1) ├┤ Ry(θ[1]) ├┤ Ry(θ[1]) ├┤ Ry(θ[3]) ├
     └───────┘└──────────┘└──────────┘└──────────┘
>>> nlocal.parameters
{Parameter(θ[1]), Parameter(θ[3])}
>>> nlocal.ordered_parameters
[1, Parameter(θ[1]), Parameter(θ[1]), Parameter(θ[3])]
戻り値の型

List[Parameter]

戻り値

The parameters objects used in the circuit.

p(theta, qubit)

Apply PhaseGate.

property parameter_bounds

The parameter bounds for the unbound parameters in the circuit.

戻り値の型

Optional[List[Tuple[float, float]]]

戻り値

A list of pairs indicating the bounds, as (lower, upper). None indicates an unbounded parameter in the corresponding direction. If None is returned, problem is fully unbounded.

property parameters

Get the Parameter objects in the circuit.

戻り値の型

Set[Parameter]

戻り値

A set containing the unbound circuit parameters.

pauli_block(pauli_string)[ソース]

Get the Pauli block for the feature map circuit.

pauli_evolution(pauli_string, time)[ソース]

Get the evolution block for the given pauli string.

property paulis

The Pauli strings used in the entanglement of the qubits.

戻り値の型

List[str]

戻り値

The Pauli strings as list.

power(power, matrix_power=False)

Raise this circuit to the power of power.

If power is a positive integer and matrix_power is False, this implementation defaults to calling repeat. Otherwise, if the circuit is unitary, the matrix is computed to calculate the matrix power.

パラメータ
  • power (int) – The power to raise this circuit to.

  • matrix_power (bool) – If True, the circuit is converted to a matrix and then the matrix power is computed. If False, and power is a positive integer, the implementation defaults to repeat.

例外

CircuitError – If the circuit needs to be converted to a gate but it is not unitary.

戻り値

A circuit implementing this circuit raised to the power of power.

戻り値の型

QuantumCircuit

property preferred_init_points

The initial points for the parameters. Can be stored as initial guess in optimization.

戻り値の型

Optional[List[float]]

戻り値

The initial values for the parameters, or None, if none have been set.

print_settings()

Returns information about the setting.

戻り値の型

str

戻り値

The class name and the attributes/parameters of the instance as str.

qasm(formatted=False, filename=None)

Return OpenQASM string.

パラメータ
  • formatted (bool) – Return formatted Qasm string.

  • filename (str) – Save Qasm to file with name 『filename』.

戻り値

If formatted=False.

戻り値の型

str

例外

ImportError – If pygments is not installed and formatted is True.

qbit_argument_conversion(qubit_representation)

Converts several qubit representations (such as indexes, range, etc.) into a list of qubits.

パラメータ

qubit_representation (Object) – representation to expand

戻り値

Where each tuple is a qubit.

戻り値の型

List(tuple)

property qregs

A list of the quantum registers associated with the circuit.

qubit_duration(*qubits)

Return the duration between the start and stop time of the first and last instructions, excluding delays, over the supplied qubits. Its time unit is self.unit.

パラメータ

*qubits – Qubits within self to include.

戻り値の型

Union[int, float]

戻り値

Return the duration between the first start and last stop time of non-delay instructions

qubit_start_time(*qubits)

Return the start time of the first instruction, excluding delays, over the supplied qubits. Its time unit is self.unit.

Return 0 if there are no instructions over qubits

パラメータ
  • *qubits – Qubits within self to include. Integers are allowed for qubits, indicating

  • of self.qubits. (indices) –

戻り値の型

Union[int, float]

戻り値

Return the start time of the first instruction, excluding delays, over the qubits

例外

CircuitError – if self is a not-yet scheduled circuit.

qubit_stop_time(*qubits)

Return the stop time of the last instruction, excluding delays, over the supplied qubits. Its time unit is self.unit.

Return 0 if there are no instructions over qubits

パラメータ
  • *qubits – Qubits within self to include. Integers are allowed for qubits, indicating

  • of self.qubits. (indices) –

戻り値の型

Union[int, float]

戻り値

Return the stop time of the last instruction, excluding delays, over the qubits

例外

CircuitError – if self is a not-yet scheduled circuit.

property qubits

Returns a list of quantum bits in the order that the registers were added.

r(theta, phi, qubit)

Apply RGate.

rcccx(control_qubit1, control_qubit2, control_qubit3, target_qubit)

Apply RC3XGate.

rccx(control_qubit1, control_qubit2, target_qubit)

Apply RCCXGate.

remove_final_measurements(inplace=True)

Removes final measurement on all qubits if they are present. Deletes the ClassicalRegister that was used to store the values from these measurements if it is idle.

Returns a new circuit without measurements if inplace=False.

パラメータ

inplace (bool) – All measurements removed inplace or return new circuit.

戻り値

Returns circuit with measurements removed when inplace = False.

戻り値の型

QuantumCircuit

repeat(reps)

Repeat this circuit reps times.

パラメータ

reps (int) – How often this circuit should be repeated.

戻り値

A circuit containing reps repetitions of this circuit.

戻り値の型

QuantumCircuit

property reps

The number of times rotation and entanglement block are repeated.

戻り値の型

int

戻り値

The number of repetitions.

reset(qubit)

Reset q.

reverse_bits()

Return a circuit with the opposite order of wires.

The circuit is 「vertically」 flipped. If a circuit is defined over multiple registers, the resulting circuit will have the same registers but with their order flipped.

This method is useful for converting a circuit written in little-endian convention to the big-endian equivalent, and vice versa.

戻り値

the circuit with reversed bit order.

戻り値の型

QuantumCircuit

サンプル

input:

┌───┐

q_0: ┤ H ├─────■──────

└───┘┌────┴─────┐

q_1: ─────┤ RX(1.57) ├

└──────────┘

output:

┌──────────┐

q_0: ─────┤ RX(1.57) ├

┌───┐└────┬─────┘

q_1: ┤ H ├─────■──────

└───┘

reverse_ops()

Reverse the circuit by reversing the order of instructions.

This is done by recursively reversing all instructions. It does not invert (adjoint) any gate.

戻り値

the reversed circuit.

戻り値の型

QuantumCircuit

サンプル

input:

┌───┐

q_0: ┤ H ├─────■──────

└───┘┌────┴─────┐

q_1: ─────┤ RX(1.57) ├

└──────────┘

output:

┌───┐

q_0: ─────■──────┤ H ├

┌────┴─────┐└───┘

q_1: ┤ RX(1.57) ├─────

└──────────┘

property rotation_blocks

The blocks in the rotation layers.

戻り値の型

List[Instruction]

戻り値

The blocks in the rotation layers.

rx(theta, qubit, label=None)

Apply RXGate.

rxx(theta, qubit1, qubit2)

Apply RXXGate.

ry(theta, qubit, label=None)

Apply RYGate.

ryy(theta, qubit1, qubit2)

Apply RYYGate.

rz(phi, qubit)

Apply RZGate.

rzx(theta, qubit1, qubit2)

Apply RZXGate.

rzz(theta, qubit1, qubit2)

Apply RZZGate.

s(qubit)

Apply SGate.

sdg(qubit)

Apply SdgGate.

size()

Returns total number of gate operations in circuit.

戻り値

Total number of gate operations.

戻り値の型

int

snapshot(label, snapshot_type='statevector', qubits=None, params=None)

Take a statevector snapshot of the internal simulator representation. Works on all qubits, and prevents reordering (like barrier). :param label: a snapshot label to report the result :type label: str :param snapshot_type: the type of the snapshot. :type snapshot_type: str :param qubits: the qubits to apply snapshot to [Default: None]. :type qubits: list or None :param params: the parameters for snapshot_type [Default: None]. :type params: list or None

戻り値

with attached command

戻り値の型

QuantumCircuit

例外

ExtensionError – malformed command

snapshot_density_matrix(label, qubits=None)

Take a density matrix snapshot of simulator state.

パラメータ
  • label (str) – a snapshot label to report the result

  • qubits (list or None) – the qubits to apply snapshot to. If None all qubits will be snapshot [Default: None].

戻り値

with attached instruction.

戻り値の型

QuantumCircuit

例外

ExtensionError – if snapshot is invalid.

snapshot_expectation_value(label, op, qubits, single_shot=False, variance=False)

Take a snapshot of expectation value <O> of an Operator.

パラメータ
  • label (str) – a snapshot label to report the result

  • op (Operator) – operator to snapshot

  • qubits (list) – the qubits to snapshot.

  • single_shot (bool) – return list for each shot rather than average [Default: False]

  • variance (bool) – compute variance of values [Default: False]

戻り値

with attached instruction.

戻り値の型

QuantumCircuit

例外

ExtensionError – if snapshot is invalid.

snapshot_probabilities(label, qubits, variance=False)

Take a probability snapshot of the simulator state.

パラメータ
  • label (str) – a snapshot label to report the result

  • qubits (list) – the qubits to snapshot.

  • variance (bool) – compute variance of probabilities [Default: False]

戻り値

with attached instruction.

戻り値の型

QuantumCircuit

例外

ExtensionError – if snapshot is invalid.

snapshot_stabilizer(label)

Take a stabilizer snapshot of the simulator state.

パラメータ

label (str) – a snapshot label to report the result.

戻り値

with attached instruction.

戻り値の型

QuantumCircuit

例外

ExtensionError – if snapshot is invalid.

Additional Information:

This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.

snapshot_statevector(label)

Take a statevector snapshot of the simulator state.

パラメータ

label (str) – a snapshot label to report the result.

戻り値

with attached instruction.

戻り値の型

QuantumCircuit

例外

ExtensionError – if snapshot is invalid.

Additional Information:

This snapshot is always performed on all qubits in a circuit. The number of qubits parameter specifies the size of the instruction as a barrier and should be set to the number of qubits in the circuit.

squ(unitary_matrix, qubit, mode='ZYZ', up_to_diagonal=False, *, u=None)

Decompose an arbitrary 2*2 unitary into three rotation gates.

Note that the decomposition is up to a global phase shift. (This is a well known decomposition, which can be found for example in Nielsen and Chuang’s book 「Quantum computation and quantum information」.)

パラメータ
  • unitary_matrix (ndarray) – 2*2 unitary (given as a (complex) ndarray).

  • qubit (QuantumRegister | Qubit) – The qubit which the gate is acting on.

  • mode (string) – determines the used decomposition by providing the rotation axes. The allowed modes are: 「ZYZ」 (default)

  • up_to_diagonal (bool) – if set to True, the single-qubit unitary is decomposed up to a diagonal matrix, i.e. a unitary u』 is implemented such that there exists a 2*2 diagonal gate d with u = d.dot(u』)

  • u (ndarray) – Deprecated, use unitary_matrix instead.

戻り値

The single-qubit unitary instruction attached to the circuit.

戻り値の型

InstructionSet

例外

QiskitError – if the format is wrong; if the array u is not unitary

swap(qubit1, qubit2)

Apply SwapGate.

sx(qubit)

Apply SXGate.

sxdg(qubit)

Apply SXdgGate.

t(qubit)

Apply TGate.

tdg(qubit)

Apply TdgGate.

to_gate(parameter_map=None, label=None)

Create a Gate out of this circuit.

パラメータ
  • parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the gate. If None, existing circuit parameters will also parameterize the gate.

  • label (str) – Optional gate label.

戻り値

a composite gate encapsulating this circuit (can be decomposed back)

戻り値の型

Gate

to_instruction(parameter_map=None)

Create an Instruction out of this circuit.

パラメータ

parameter_map (dict) – For parameterized circuits, a mapping from parameters in the circuit to parameters to be used in the instruction. If None, existing circuit parameters will also parameterize the instruction.

戻り値

a composite instruction encapsulating this circuit (can be decomposed back)

戻り値の型

qiskit.circuit.Instruction

toffoli(control_qubit1, control_qubit2, target_qubit)

Apply CCXGate.

u(theta, phi, lam, qubit)

Apply UGate.

u1(theta, qubit)

Apply U1Gate.

u2(phi, lam, qubit)

Apply U2Gate.

u3(theta, phi, lam, qubit)

Apply U3Gate.

uc(gate_list, q_controls, q_target, up_to_diagonal=False)

Attach a uniformly controlled gates (also called multiplexed gates) to a circuit.

The decomposition was introduced by Bergholm et al. in https://arxiv.org/pdf/quant-ph/0410066.pdf.

パラメータ
  • gate_list (list[ndarray]) – list of two qubit unitaries [U_0,…,U_{2^k-1}], where each single-qubit unitary U_i is a given as a 2*2 array

  • q_controls (QuantumRegister|list[(QuantumRegister,int)]) – list of k control qubits. The qubits are ordered according to their significance in the computational basis. For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the unitary U_0 is performed if q[1] and q[2] are in the state zero, U_1 is performed if q[2] is in the state zero and q[1] is in the state one, and so on

  • q_target (QuantumRegister|(QuantumRegister,int)) – target qubit, where we act on with the single-qubit gates.

  • up_to_diagonal (bool) – If set to True, the uniformly controlled gate is decomposed up to a diagonal gate, i.e. a unitary u』 is implemented such that there exists a diagonal gate d with u = d.dot(u』), where the unitary u describes the uniformly controlled gate

戻り値

the uniformly controlled gate is attached to the circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucrx(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed) Rx rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

パラメータ
  • angle_list (list) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)

  • q_controls (QuantumRegister|list) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[0],q[1]] (with q = QuantumRegister(2)), the rotation Rx(a_0) is performed if q[0] and q[1] are in the state zero, the rotation Rx(a_1) is performed if q[0] is in the state one and q[1] is in the state zero, and so on

  • q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates

戻り値

the uniformly controlled rotation gate is attached to the circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucry(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed) Ry rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

パラメータ
  • angle_list (list[numbers) – list of (real) rotation angles \([a_0,...,a_{2^k-1}]\)

  • q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[0],q[1]] (with q = QuantumRegister(2)), the rotation Ry(a_0) is performed if q[0] and q[1] are in the state zero, the rotation Ry(a_1) is performed if q[0] is in the state one and q[1] is in the state zero, and so on

  • q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates

戻り値

the uniformly controlled rotation gate is attached to the circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

ucrz(angle_list, q_controls, q_target)

Attach a uniformly controlled (also called multiplexed gates) Rz rotation gate to a circuit.

The decomposition is base on https://arxiv.org/pdf/quant-ph/0406176.pdf by Shende et al.

パラメータ
  • angle_list (list[numbers) – list of (real) rotation angles [a_0,…,a_{2^k-1}]

  • q_controls (QuantumRegister|list[Qubit]) – list of k control qubits (or empty list if no controls). The control qubits are ordered according to their significance in increasing order: For example if q_controls=[q[1],q[2]] (with q = QuantumRegister(2)), the rotation Rz(a_0)is performed if q[1] and q[2] are in the state zero, the rotation Rz(a_1) is performed if q[1] is in the state one and q[2] is in the state zero, and so on

  • q_target (QuantumRegister|Qubit) – target qubit, where we act on with the single-qubit rotation gates

戻り値

the uniformly controlled rotation gate is attached to the circuit.

戻り値の型

QuantumCircuit

例外

QiskitError – if the list number of control qubits does not correspond to the provided number of single-qubit unitaries; if an input is of the wrong type

unitary(obj, qubits, label=None)

Apply unitary gate to q.

width()

Return number of qubits plus clbits in circuit.

戻り値

Width of circuit.

戻り値の型

int

x(qubit, label=None)

Apply XGate.

y(qubit)

Apply YGate.

z(qubit)

Apply ZGate.