qiskit.quantum_info.states.quantum_state のソースコード
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Abstract QuantumState class.
"""
import copy
import warnings
from abc import abstractmethod
import numpy as np
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.operators.base_operator import BaseOperator, AbstractTolerancesMeta
from qiskit.quantum_info.operators.operator import Operator
from qiskit.result.counts import Counts
class QuantumState(metaclass=AbstractTolerancesMeta):
"""Abstract quantum state base class"""
def __init__(self, dims):
"""Initialize a state object."""
# Dimension attributes
# Note that the tuples of input and output dims are ordered
# from least-significant to most-significant subsystems
self._dims = None # tuple of dimensions of each subsystem
self._dim = None # combined dimension of all subsystems
self._num_qubits = None # number of qubit subsystems if N-qubit state
self._set_dims(dims)
# RNG for measure functions
self._rng_generator = None
def __eq__(self, other):
return isinstance(other, self.__class__) and self.dims() == other.dims()
@property
def dim(self):
"""Return total state dimension."""
return self._dim
@property
def num_qubits(self):
"""Return the number of qubits if a N-qubit state or None otherwise."""
return self._num_qubits
@property
def atol(self):
"""The absolute tolerance parameter for float comparisons."""
return self.__class__.atol
@property
def rtol(self):
"""The relative tolerance parameter for float comparisons."""
return self.__class__.rtol
@classmethod
def set_atol(cls, value):
"""Set the class default absolute tolerance parameter for float comparisons.
DEPRECATED: use operator.atol = value instead
"""
warnings.warn("`{}.set_atol` method is deprecated, use `{}.atol = "
"value` instead.".format(cls.__name__, cls.__name__),
DeprecationWarning)
cls.atol = value
@classmethod
def set_rtol(cls, value):
"""Set the class default relative tolerance parameter for float comparisons.
DEPRECATED: use operator.rtol = value instead
"""
warnings.warn("`{}.set_rtol` method is deprecated, use `{}.rtol = "
"value` instead.".format(cls.__name__, cls.__name__),
DeprecationWarning)
cls.rtol = value
@property
def _rng(self):
if self._rng_generator is None:
return np.random
return self._rng_generator
def _reshape(self, dims=None):
"""Reshape dimensions of the state.
Arg:
dims (tuple): new subsystem dimensions.
Returns:
self: returns self with reshaped dimensions.
Raises:
QiskitError: if combined size of all subsystem dimensions are not constant.
"""
if dims is not None:
if np.product(dims) != self._dim:
raise QiskitError(
"Reshaped dims are incompatible with combined dimension."
)
self._dims = tuple(dims)
return self
def dims(self, qargs=None):
"""Return tuple of input dimension for specified subsystems."""
if qargs is None:
return self._dims
return tuple(self._dims[i] for i in qargs)
def copy(self):
"""Make a copy of current operator."""
return copy.deepcopy(self)
def seed(self, value=None):
"""Set the seed for the quantum state RNG."""
if value is None:
self._rng_generator = None
elif isinstance(value, np.random.Generator):
self._rng_generator = value
else:
self._rng_generator = np.random.default_rng(value)
@abstractmethod
def is_valid(self, atol=None, rtol=None):
"""Return True if a valid quantum state."""
pass
@abstractmethod
def to_operator(self):
"""Convert state to matrix operator class"""
pass
@abstractmethod
def conjugate(self):
"""Return the conjugate of the operator."""
pass
@abstractmethod
def trace(self):
"""Return the trace of the quantum state as a density matrix."""
pass
@abstractmethod
def purity(self):
"""Return the purity of the quantum state."""
pass
@abstractmethod
def tensor(self, other):
"""Return the tensor product state self ⊗ other.
Args:
other (QuantumState): a quantum state object.
Returns:
QuantumState: the tensor product operator self ⊗ other.
Raises:
QiskitError: if other is not a quantum state.
"""
pass
@abstractmethod
def expand(self, other):
"""Return the tensor product state other ⊗ self.
Args:
other (QuantumState): a quantum state object.
Returns:
QuantumState: the tensor product state other ⊗ self.
Raises:
QiskitError: if other is not a quantum state.
"""
pass
def _add(self, other):
"""Return the linear combination self + other.
Args:
other (QuantumState): a state object.
Returns:
QuantumState: the linear combination self + other.
Raises:
NotImplementedError: if subclass does not support addition.
"""
raise NotImplementedError(
"{} does not support addition".format(type(self)))
def _multiply(self, other):
"""Return the scalar multipled state other * self.
Args:
other (complex): a complex number.
Returns:
QuantumState: the scalar multipled state other * self.
Raises:
NotImplementedError: if subclass does not support scala
multiplication.
"""
raise NotImplementedError(
"{} does not support scalar multiplication".format(type(self)))
def add(self, other):
"""Return the linear combination self + other.
DEPRECATED: use ``state + other`` instead.
Args:
other (QuantumState): a quantum state object.
Returns:
LinearOperator: the linear combination self + other.
Raises:
QiskitError: if other is not a quantum state, or has
incompatible dimensions.
"""
warnings.warn("`{}.add` method is deprecated, use + binary operator"
"`state + other` instead.".format(self.__class__),
DeprecationWarning)
return self._add(other)
def subtract(self, other):
"""Return the linear operator self - other.
DEPRECATED: use ``state - other`` instead.
Args:
other (QuantumState): a quantum state object.
Returns:
LinearOperator: the linear combination self - other.
Raises:
QiskitError: if other is not a quantum state, or has
incompatible dimensions.
"""
warnings.warn("`{}.subtract` method is deprecated, use - binary operator"
"`state - other` instead.".format(self.__class__),
DeprecationWarning)
return self._add(-other)
def multiply(self, other):
"""Return the scalar multipled state other * self.
Args:
other (complex): a complex number.
Returns:
QuantumState: the scalar multipled state other * self.
Raises:
QiskitError: if other is not a valid complex number.
"""
warnings.warn("`{}.multiply` method is deprecated, use * binary operator"
"`other * state` instead.".format(self.__class__),
DeprecationWarning)
return self._multiply(other)
@abstractmethod
def evolve(self, other, qargs=None):
"""Evolve a quantum state by the operator.
Args:
other (Operator or QuantumChannel): The operator to evolve by.
qargs (list): a list of QuantumState subsystem positions to apply
the operator on.
Returns:
QuantumState: the output quantum state.
Raises:
QiskitError: if the operator dimension does not match the
specified QuantumState subsystem dimensions.
"""
pass
@abstractmethod
def expectation_value(self, oper, qargs=None):
"""Compute the expectation value of an operator.
Args:
oper (BaseOperator): an operator to evaluate expval.
qargs (None or list): subsystems to apply the operator on.
Returns:
complex: the expectation value.
"""
pass
@abstractmethod
def probabilities(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
np.array: The Numpy vector array of probabilities.
"""
pass
def probabilities_dict(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability dictionary.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
This dictionary representation uses a Ket-like notation where the
dictionary keys are qudit strings for the subsystem basis vectors.
If any subsystem has a dimension greater than 10 comma delimiters are
inserted between integers so that subsystems can be distinguished.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
dict: The measurement probabilities in dict (ket) form.
"""
return self._vector_to_dict(
self.probabilities(qargs=qargs, decimals=decimals),
self.dims(qargs),
string_labels=True)
def sample_memory(self, shots, qargs=None):
"""Sample a list of qubit measurement outcomes in the computational basis.
Args:
shots (int): number of samples to generate.
qargs (None or list): subsystems to sample measurements for,
if None sample measurement of all
subsystems (Default: None).
Returns:
np.array: list of sampled counts if the order sampled.
Additional Information:
This function *samples* measurement outcomes using the measure
:meth:`probabilities` for the current state and `qargs`. It does
not actually implement the measurement so the current state is
not modified.
The seed for random number generator used for sampling can be
set to a fixed value by using the stats :meth:`seed` method.
"""
# Get measurement probabilities for measured qubits
probs = self.probabilities(qargs)
# Generate list of possible outcome string labels
labels = self._index_to_ket_array(
np.arange(len(probs)), self.dims(qargs), string_labels=True)
return self._rng.choice(labels, p=probs, size=shots)
def sample_counts(self, shots, qargs=None):
"""Sample a dict of qubit measurement outcomes in the computational basis.
Args:
shots (int): number of samples to generate.
qargs (None or list): subsystems to sample measurements for,
if None sample measurement of all
subsystems (Default: None).
Returns:
Counts: sampled counts dictionary.
Additional Information:
This function *samples* measurement outcomes using the measure
:meth:`probabilities` for the current state and `qargs`. It does
not actually implement the measurement so the current state is
not modified.
The seed for random number generator used for sampling can be
set to a fixed value by using the stats :meth:`seed` method.
"""
# Sample list of outcomes
samples = self.sample_memory(shots, qargs=qargs)
# Combine all samples into a counts dictionary
inds, counts = np.unique(samples, return_counts=True)
return Counts(zip(inds, counts))
def measure(self, qargs=None):
"""Measure subsystems and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random
number generator for sampling the measurement outcome. The RNG
seed can be set using the :meth:`seed` method.
Args:
qargs (list or None): subsystems to sample measurements for,
if None sample measurement of all
subsystems (Default: None).
Returns:
tuple: the pair ``(outcome, state)`` where ``outcome`` is the
measurement outcome string label, and ``state`` is the
collapsed post-measurement state for the corresponding
outcome.
"""
# Sample a single measurement outcome from probabilities
dims = self.dims(qargs)
probs = self.probabilities(qargs)
sample = self._rng.choice(len(probs), p=probs, size=1)
# Format outcome
outcome = self._index_to_ket_array(
sample, self.dims(qargs), string_labels=True)[0]
# Convert to projector for state update
proj = np.zeros(len(probs), dtype=complex)
proj[sample] = 1 / np.sqrt(probs[sample])
# Update state object
# TODO: implement a more efficient state update method for
# diagonal matrix multiplication
ret = self.evolve(
Operator(np.diag(proj), input_dims=dims, output_dims=dims),
qargs=qargs)
return outcome, ret
@classmethod
def _automatic_dims(cls, dims, size):
"""Check if input dimension corresponds to qubit subsystems."""
return BaseOperator._automatic_dims(dims, size)
def _set_dims(self, dims):
"""Set dimension attribute"""
# Shape lists the dimension of each subsystem starting from
# least significant through to most significant.
self._dims = tuple(dims)
# The total input and output dimensions are given by the product
# of all subsystem dimensions
self._dim = np.product(dims)
# Check if an N-qubit operator
if set(self._dims) == {2}:
# If so set the number of qubits
self._num_qubits = len(self._dims)
else:
# Otherwise set the number of qubits to None
self._num_qubits = None
@staticmethod
def _index_to_ket_array(inds, dims, string_labels=False):
"""Convert an index array into a ket array.
Args:
inds (np.array): an integer index array.
dims (tuple): a list of subsystem dimensions.
string_labels (bool): return ket as string if True, otherwise
return as index array (Default: False).
Returns:
np.array: an array of ket strings if string_label=True, otherwise
an array of ket lists.
"""
shifts = [1]
for dim in dims[:-1]:
shifts.append(shifts[-1] * dim)
kets = np.array([(inds // shift) % dim for dim, shift in zip(dims, shifts)])
if string_labels:
max_dim = max(dims)
char_kets = np.asarray(kets, dtype=np.unicode_)
str_kets = char_kets[0]
for row in char_kets[1:]:
if max_dim > 10:
str_kets = np.char.add(',', str_kets)
str_kets = np.char.add(row, str_kets)
return str_kets.T
return kets.T
@staticmethod
def _vector_to_dict(vec, dims, decimals=None, string_labels=False):
"""Convert a vector to a ket dictionary.
This representation will not show zero values in the output dict.
Args:
vec (array): a Numpy vector array.
dims (tuple): subsystem dimensions.
decimals (None or int): number of decimal places to round to.
(See Numpy.round), if None no rounding
is done (Default: None).
string_labels (bool): return ket as string if True, otherwise
return as index array (Default: False).
Returns:
dict: the vector in dictionary `ket` form.
"""
# Get indices of non-zero elements
vals = vec if decimals is None else vec.round(decimals=decimals)
inds, = vals.nonzero()
# Convert to ket tuple based on subsystem dimensions
kets = QuantumState._index_to_ket_array(
inds, dims, string_labels=string_labels)
# Make dict of tuples
if string_labels:
return dict(zip(kets, vec[inds]))
return {tuple(ket): val for ket, val in zip(kets, vals[inds])}
@staticmethod
def _matrix_to_dict(mat, dims, decimals=None, string_labels=False):
"""Convert a matrix to a ket dictionary.
This representation will not show zero values in the output dict.
Args:
mat (array): a Numpy matrix array.
dims (tuple): subsystem dimensions.
decimals (None or int): number of decimal places to round to.
(See Numpy.round), if None no rounding
is done (Default: None).
string_labels (bool): return ket as string if True, otherwise
return as index array (Default: False).
Returns:
dict: the matrix in dictionary `ket` form.
"""
# Get indices of non-zero elements
vals = mat if decimals is None else mat.round(decimals=decimals)
inds_row, inds_col, = vals.nonzero()
# Convert to ket tuple based on subsystem dimensions
bras = QuantumState._index_to_ket_array(
inds_row, dims, string_labels=string_labels)
kets = QuantumState._index_to_ket_array(
inds_col, dims, string_labels=string_labels)
# Make dict of tuples
if string_labels:
return {'{}|{}'.format(ket, bra): val for ket, bra, val in zip(
kets, bras, vals[inds_row, inds_col])}
return {(tuple(ket), tuple(bra)): val for ket, bra, val in zip(
kets, bras, vals[inds_row, inds_col])}
@staticmethod
def _accumulate_dims(dims, qargs):
"""Flatten subsystem dimensions for unspecified qargs.
This has the potential to reduce the number of subsystems
by combining consecutive subsystems between the specified
qargs. For example, if we had a 5-qubit system with
``dims = (2, 2, 2, 2, 2)``, and ``qargs=[0, 4]``, then the
flattened system will have dimensions ``new_dims = (2, 8, 2)``
and qargs ``new_qargs = [0, 2]``.
Args:
dims (tuple): subsystem dimensions.
qargs (list): qargs list.
Returns:
tuple: the pair (new_dims, new_qargs).
"""
qargs_map = {}
new_dims = []
# Accumulate subsystems that can be combined
accum = []
for i, dim in enumerate(dims):
if i in qargs:
if accum:
new_dims.append(np.product(accum))
accum = []
new_dims.append(dim)
qargs_map[i] = len(new_dims) - 1
else:
accum.append(dim)
if accum:
new_dims.append(np.product(accum))
return tuple(new_dims), [qargs_map[i] for i in qargs]
@staticmethod
def _subsystem_probabilities(probs, dims, qargs=None):
"""Marginalize a probability vector according to subsystems.
Args:
probs (np.array): a probability vector Numpy array.
dims (tuple): subsystem dimensions.
qargs (None or list): a list of subsystems to return
marginalized probabilities for. If None return all
probabilities (Default: None).
Returns:
np.array: the marginalized probability vector flattened
for the specified qargs.
"""
if qargs is None:
return probs
# Accumulate dimensions to trace over
accum_dims, accum_qargs = QuantumState._accumulate_dims(
dims, qargs)
# Get sum axis for maginalized subsystems
n_qargs = len(accum_dims)
axis = list(range(n_qargs))
for i in accum_qargs:
axis.remove(n_qargs - 1 - i)
# Reshape the probability to a tensor and sum over maginalized axes
new_probs = np.sum(np.reshape(probs, list(reversed(accum_dims))),
axis=tuple(axis))
# Transpose output probs based on order of qargs
if sorted(accum_qargs) != accum_qargs:
axes = np.argsort(accum_qargs)
return np.ravel(np.transpose(new_probs, axes=axes))
return np.ravel(new_probs)
# Overloads
def __matmul__(self, other):
# Check for subsystem case return by __call__ method
if isinstance(other, tuple) and len(other) == 2:
return self.evolve(other[0], qargs=other[1])
return self.evolve(other)
def __xor__(self, other):
return self.tensor(other)
def __mul__(self, other):
return self._multiply(other)
def __truediv__(self, other):
return self._multiply(1 / other)
def __rmul__(self, other):
return self.__mul__(other)
def __add__(self, other):
return self._add(other)
def __sub__(self, other):
return self._add(-other)
def __neg__(self):
return self._multiply(-1)