Japanese
言語
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.circuit.library.standard_gates.x のソースコード

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""X, CX, CCX and multi-controlled X gates."""

import warnings
from math import ceil
import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.circuit._utils import _compute_control_matrix, _ctrl_state_to_int
from qiskit.qasm import pi
from .h import HGate
from .t import TGate, TdgGate
from .u1 import U1Gate
from .u2 import U2Gate
from .sx import SXGate


[ドキュメント]class XGate(Gate): r"""The single-qubit Pauli-X gate (:math:`\sigma_x`). **Matrix Representation:** .. math:: X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} **Circuit symbol:** .. parsed-literal:: ┌───┐ q_0: ┤ X ├ └───┘ Equivalent to a :math:`\pi` radian rotation about the X axis. .. note:: A global phase difference exists between the definitions of :math:`RX(\pi)` and :math:`X`. .. math:: RX(\pi) = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} = -i X The gate is equivalent to a classical bit flip. .. math:: |0\rangle \rightarrow |1\rangle \\ |1\rangle \rightarrow |0\rangle """
[ドキュメント] def __init__(self, label=None): """Create new X gate.""" super().__init__('x', 1, [], label=label)
def _define(self): """ gate x a { u3(pi,0,pi) a; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u3 import U3Gate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U3Gate(pi, 0, pi), [q[0]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a (mutli-)controlled-X gate. One control returns a CX gate. Two controls returns a CCX gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ gate = MCXGate(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate
[ドキュメント] def inverse(self): r"""Return inverted X gate (itself).""" return XGate() # self-inverse
[ドキュメント] def to_matrix(self): """Return a numpy.array for the X gate.""" return numpy.array([[0, 1], [1, 0]], dtype=complex)
[ドキュメント]class CXGate(ControlledGate): r"""Controlled-X gate. **Circuit symbol:** .. parsed-literal:: q_0: ──■── ┌─┴─┐ q_1: ┤ X ├ └───┘ **Matrix representation:** .. math:: CX\ q_0, q_1 = I \otimes |0\rangle\langle0| + X \otimes |1\rangle\langle1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───┐ q_0: ┤ X ├ └─┬─┘ q_1: ──■── .. math:: CX\ q_1, q_0 = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} In the computational basis, this gate flips the target qubit if the control qubit is in the :math:`|1\rangle` state. In this sense it is similar to a classical XOR gate. .. math:: `|a, b\rangle \rightarrow |a, a \oplus b\rangle` """
[ドキュメント] def __init__(self, label=None, ctrl_state=None): """Create new CX gate.""" super().__init__('cx', 2, [], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=XGate())
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a controlled-X gate with more control lines. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ ctrl_state = _ctrl_state_to_int(ctrl_state, num_ctrl_qubits) new_ctrl_state = (self.ctrl_state << num_ctrl_qubits) | ctrl_state gate = MCXGate(num_ctrl_qubits=num_ctrl_qubits + 1, label=label, ctrl_state=new_ctrl_state) gate.base_gate.label = self.label return gate
[ドキュメント] def inverse(self): """Return inverted CX gate (itself).""" return CXGate(ctrl_state=self.ctrl_state) # self-inverse
[ドキュメント] def to_matrix(self): """Return a numpy.array for the CX gate.""" if self.ctrl_state: return numpy.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]], dtype=complex) else: return numpy.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]], dtype=complex)
[ドキュメント]class CCXGate(ControlledGate): r"""CCX gate, also known as Toffoli gate. **Circuit symbol:** .. parsed-literal:: q_0: ──■── q_1: ──■── ┌─┴─┐ q_2: ┤ X ├ └───┘ **Matrix representation:** .. math:: CCX q_0, q_1, q_2 = |0 \rangle \langle 0| \otimes I \otimes I + |1 \rangle \langle 1| \otimes CX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_2 and q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───┐ q_0: ┤ X ├ └─┬─┘ q_1: ──■── q_2: ──■── .. math:: CCX\ q_2, q_1, q_0 = I \otimes I \otimes |0 \rangle \langle 0| + CX \otimes |1 \rangle \langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} """
[ドキュメント] def __init__(self, label=None, ctrl_state=None): """Create new CCX gate.""" super().__init__('ccx', 3, [], num_ctrl_qubits=2, label=label, ctrl_state=ctrl_state, base_gate=XGate())
def _define(self): """ gate ccx a,b,c { h c; cx b,c; tdg c; cx a,c; t c; cx b,c; tdg c; cx a,c; t b; t c; h c; cx a,b; t a; tdg b; cx a,b;} """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(3, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (HGate(), [q[2]], []), (CXGate(), [q[1], q[2]], []), (TdgGate(), [q[2]], []), (CXGate(), [q[0], q[2]], []), (TGate(), [q[2]], []), (CXGate(), [q[1], q[2]], []), (TdgGate(), [q[2]], []), (CXGate(), [q[0], q[2]], []), (TGate(), [q[1]], []), (TGate(), [q[2]], []), (HGate(), [q[2]], []), (CXGate(), [q[0], q[1]], []), (TGate(), [q[0]], []), (TdgGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Controlled version of this gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ ctrl_state = _ctrl_state_to_int(ctrl_state, num_ctrl_qubits) new_ctrl_state = (self.ctrl_state << num_ctrl_qubits) | ctrl_state gate = MCXGate(num_ctrl_qubits=num_ctrl_qubits + 2, label=label, ctrl_state=new_ctrl_state) gate.base_gate.label = self.label return gate
[ドキュメント] def inverse(self): """Return an inverted CCX gate (also a CCX).""" return CCXGate(ctrl_state=self.ctrl_state) # self-inverse
[ドキュメント] def to_matrix(self): """Return a numpy.array for the CCX gate.""" return _compute_control_matrix(self.base_gate.to_matrix(), self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
[ドキュメント]class RCCXGate(Gate): """The simplified Toffoli gate, also referred to as Margolus gate. The simplified Toffoli gate implements the Toffoli gate up to relative phases. This implementation requires three CX gates which is the minimal amount possible, as shown in https://arxiv.org/abs/quant-ph/0312225. Note, that the simplified Toffoli is not equivalent to the Toffoli. But can be used in places where the Toffoli gate is uncomputed again. This concrete implementation is from https://arxiv.org/abs/1508.03273, the dashed box of Fig. 3. """
[ドキュメント] def __init__(self, label=None): """Create a new simplified CCX gate.""" super().__init__('rccx', 3, [], label=label)
def _define(self): """ gate rccx a,b,c { u2(0,pi) c; u1(pi/4) c; cx b, c; u1(-pi/4) c; cx a, c; u1(pi/4) c; cx b, c; u1(-pi/4) c; u2(0,pi) c; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(3, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U2Gate(0, pi), [q[2]], []), # H gate (U1Gate(pi / 4), [q[2]], []), # T gate (CXGate(), [q[1], q[2]], []), (U1Gate(-pi / 4), [q[2]], []), # inverse T gate (CXGate(), [q[0], q[2]], []), (U1Gate(pi / 4), [q[2]], []), (CXGate(), [q[1], q[2]], []), (U1Gate(-pi / 4), [q[2]], []), # inverse T gate (U2Gate(0, pi), [q[2]], []), # H gate ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def to_matrix(self): """Return a numpy.array for the simplified CCX gate.""" return numpy.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, -1j], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1j, 0, 0, 0, 0]], dtype=complex)
[ドキュメント]class C3SXGate(ControlledGate): """The 3-qubit controlled sqrt-X gate. This implementation is based on Page 17 of [1]. References: [1] Barenco et al., 1995. https://arxiv.org/pdf/quant-ph/9503016.pdf """
[ドキュメント] def __init__(self, label=None, ctrl_state=None, *, angle=None): """Create a new 3-qubit controlled sqrt-X gate. Args: label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. angle (float): DEPRECATED. The angle used in the controlled-U1 gates. An angle of π/8 yields the sqrt(X) gates, an angle of π/4 the 3-qubit controlled X gate. """ super().__init__('c3sx', 4, [], num_ctrl_qubits=3, label=label, ctrl_state=ctrl_state, base_gate=SXGate()) if angle is not None: warnings.warn('The angle argument is deprecated as of Qiskit Terra 0.17.0 and will ' 'be removed no earlier than 3 months after the release date.', DeprecationWarning, stacklevel=2) if angle is None: angle = numpy.pi / 8 self._angle = angle
def _define(self): """ gate c3sqrtx a,b,c,d { h d; cu1(-pi/8) a,d; h d; cx a,b; h d; cu1(pi/8) b,d; h d; cx a,b; h d; cu1(-pi/8) b,d; h d; cx b,c; h d; cu1(pi/8) c,d; h d; cx a,c; h d; cu1(-pi/8) c,d; h d; cx b,c; h d; cu1(pi/8) c,d; h d; cx a,c; h d; cu1(-pi/8) c,d; h d; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import CU1Gate q = QuantumRegister(4, name='q') # pylint: disable=invalid-unary-operand-type rules = [ (HGate(), [q[3]], []), (CU1Gate(-self._angle), [q[0], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[0], q[1]], []), (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[1], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[0], q[1]], []), (HGate(), [q[3]], []), (CU1Gate(-self._angle), [q[1], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[1], q[2]], []), (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[2], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[0], q[2]], []), (HGate(), [q[3]], []), (CU1Gate(-self._angle), [q[2], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[1], q[2]], []), (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[2], q[3]], []), (HGate(), [q[3]], []), (CXGate(), [q[0], q[2]], []), (HGate(), [q[3]], []), (CU1Gate(-self._angle), [q[2], q[3]], []), (HGate(), [q[3]], []) ] qc = QuantumCircuit(q) for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def inverse(self): """Invert this gate. The C3X is its own inverse.""" # pylint: disable=invalid-unary-operand-type if self._angle is not None: angle = -self._angle else: angle = None return C3SXGate(angle=angle, ctrl_state=self.ctrl_state)
[ドキュメント]class C3XGate(ControlledGate): r"""The 4-qubit controlled X gate. This implementation uses :math:`\sqrt{T}` and 14 CNOT gates. """ def __new__(cls, angle=None, label=None, ctrl_state=None): if angle is not None: return C3SXGate(label, ctrl_state, angle=angle) instance = super().__new__(cls) instance.__init__(None, label, ctrl_state) return instance # pylint: disable=unused-argument
[ドキュメント] def __init__(self, angle=None, label=None, ctrl_state=None): """Create a new 3-qubit controlled X gate.""" super().__init__('mcx', 4, [], num_ctrl_qubits=3, label=label, ctrl_state=ctrl_state, base_gate=XGate())
# seems like open controls not hapening? def _define(self): """ gate c3x a,b,c,d { h d; p(pi/8) a; p(pi/8) b; p(pi/8) c; p(pi/8) d; cx a, b; p(-pi/8) b; cx a, b; cx b, c; p(-pi/8) c; cx a, c; p(pi/8) c; cx b, c; p(-pi/8) c; cx a, c; cx c, d; p(-pi/8) d; cx b, d; p(pi/8) d; cx c, d; p(-pi/8) d; cx a, d; p(pi/8) d; cx c, d; p(-pi/8) d; cx b, d; p(pi/8) d; cx c, d; p(-pi/8) d; cx a, d; h d; } """ from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(4, name='q') qc = QuantumCircuit(q, name=self.name) qc.h(3) qc.p(pi / 8, [0, 1, 2, 3]) qc.cx(0, 1) qc.p(-pi / 8, 1) qc.cx(0, 1) qc.cx(1, 2) qc.p(-pi / 8, 2) qc.cx(0, 2) qc.p(pi / 8, 2) qc.cx(1, 2) qc.p(-pi / 8, 2) qc.cx(0, 2) qc.cx(2, 3) qc.p(-pi / 8, 3) qc.cx(1, 3) qc.p(pi / 8, 3) qc.cx(2, 3) qc.p(-pi / 8, 3) qc.cx(0, 3) qc.p(pi / 8, 3) qc.cx(2, 3) qc.p(-pi / 8, 3) qc.cx(1, 3) qc.p(pi / 8, 3) qc.cx(2, 3) qc.p(-pi / 8, 3) qc.cx(0, 3) qc.h(3) self.definition = qc
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Controlled version of this gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ ctrl_state = _ctrl_state_to_int(ctrl_state, num_ctrl_qubits) new_ctrl_state = (self.ctrl_state << num_ctrl_qubits) | ctrl_state gate = MCXGate(num_ctrl_qubits=num_ctrl_qubits + 3, label=label, ctrl_state=new_ctrl_state) gate.base_gate.label = self.label return gate
[ドキュメント] def inverse(self): """Invert this gate. The C4X is its own inverse.""" return C3XGate(ctrl_state=self.ctrl_state)
def __array__(self, dtype=None): """Return a numpy.array for the C4X gate.""" mat = _compute_control_matrix(self.base_gate.to_matrix(), self.num_ctrl_qubits, ctrl_state=self.ctrl_state) if dtype: return numpy.asarray(mat, dtype=dtype) return mat
[ドキュメント]class RC3XGate(Gate): """The simplified 3-controlled Toffoli gate. The simplified Toffoli gate implements the Toffoli gate up to relative phases. Note, that the simplified Toffoli is not equivalent to the Toffoli. But can be used in places where the Toffoli gate is uncomputed again. This concrete implementation is from https://arxiv.org/abs/1508.03273, the complete circuit of Fig. 4. """
[ドキュメント] def __init__(self, label=None): """Create a new RC3X gate.""" super().__init__('rcccx', 4, [], label=label)
def _define(self): """ gate rc3x a,b,c,d { u2(0,pi) d; u1(pi/4) d; cx c,d; u1(-pi/4) d; u2(0,pi) d; cx a,d; u1(pi/4) d; cx b,d; u1(-pi/4) d; cx a,d; u1(pi/4) d; cx b,d; u1(-pi/4) d; u2(0,pi) d; u1(pi/4) d; cx c,d; u1(-pi/4) d; u2(0,pi) d; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(4, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U2Gate(0, pi), [q[3]], []), # H gate (U1Gate(pi / 4), [q[3]], []), # T gate (CXGate(), [q[2], q[3]], []), (U1Gate(-pi / 4), [q[3]], []), # inverse T gate (U2Gate(0, pi), [q[3]], []), (CXGate(), [q[0], q[3]], []), (U1Gate(pi / 4), [q[3]], []), (CXGate(), [q[1], q[3]], []), (U1Gate(-pi / 4), [q[3]], []), (CXGate(), [q[0], q[3]], []), (U1Gate(pi / 4), [q[3]], []), (CXGate(), [q[1], q[3]], []), (U1Gate(-pi / 4), [q[3]], []), (U2Gate(0, pi), [q[3]], []), (U1Gate(pi / 4), [q[3]], []), (CXGate(), [q[2], q[3]], []), (U1Gate(-pi / 4), [q[3]], []), (U2Gate(0, pi), [q[3]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def to_matrix(self): """Return a numpy.array for the RC3X gate.""" return numpy.array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1j, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1j, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=complex)
[ドキュメント]class C4XGate(ControlledGate): """The 4-qubit controlled X gate. This implementation is based on Page 21, Lemma 7.5, of [1]. References: [1] Barenco et al., 1995. https://arxiv.org/pdf/quant-ph/9503016.pdf """
[ドキュメント] def __init__(self, label=None, ctrl_state=None): """Create a new 4-qubit controlled X gate.""" super().__init__('mcx', 5, [], num_ctrl_qubits=4, label=label, ctrl_state=ctrl_state, base_gate=XGate())
# seems like open controls not hapening? def _define(self): """ gate c3sqrtx a,b,c,d { h d; cu1(-pi/8) a,d; h d; cx a,b; h d; cu1(pi/8) b,d; h d; cx a,b; h d; cu1(-pi/8) b,d; h d; cx b,c; h d; cu1(pi/8) c,d; h d; cx a,c; h d; cu1(-pi/8) c,d; h d; cx b,c; h d; cu1(pi/8) c,d; h d; cx a,c; h d; cu1(-pi/8) c,d; h d; } gate c4x a,b,c,d,e { h e; cu1(-pi/2) d,e; h e; c3x a,b,c,d; h e; cu1(pi/4) d,e; h e; c3x a,b,c,d; c3sqrtx a,b,c,e; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import CU1Gate q = QuantumRegister(5, name='q') qc = QuantumCircuit(q, name=self.name) rules = [ (HGate(), [q[4]], []), (CU1Gate(-numpy.pi / 2), [q[3], q[4]], []), (HGate(), [q[4]], []), (RC3XGate(), [q[0], q[1], q[2], q[3]], []), (HGate(), [q[4]], []), (CU1Gate(numpy.pi / 2), [q[3], q[4]], []), (HGate(), [q[4]], []), (RC3XGate().inverse(), [q[0], q[1], q[2], q[3]], []), (C3SXGate(), [q[0], q[1], q[2], q[4]], []), ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Controlled version of this gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ ctrl_state = _ctrl_state_to_int(ctrl_state, num_ctrl_qubits) new_ctrl_state = (self.ctrl_state << num_ctrl_qubits) | ctrl_state gate = MCXGate(num_ctrl_qubits=num_ctrl_qubits + 4, label=label, ctrl_state=new_ctrl_state) gate.base_gate.label = self.label return gate
[ドキュメント] def inverse(self): """Invert this gate. The C4X is its own inverse.""" return C4XGate(ctrl_state=self.ctrl_state)
[ドキュメント] def to_matrix(self): """Return a numpy.array for the C4X gate.""" return _compute_control_matrix(self.base_gate.to_matrix(), self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
[ドキュメント]class MCXGate(ControlledGate): """The general, multi-controlled X gate.""" def __new__(cls, num_ctrl_qubits=None, label=None, ctrl_state=None): """Create a new MCX instance. Depending on the number of controls and which mode of the MCX, this creates an explicit CX, CCX, C3X or C4X instance or a generic MCX gate. """ # The CXGate and CCXGate will be implemented for all modes of the MCX, and # the C3XGate and C4XGate will be implemented in the MCXGrayCode class. explicit = { 1: CXGate, 2: CCXGate } if num_ctrl_qubits in explicit.keys(): gate_class = explicit[num_ctrl_qubits] gate = gate_class.__new__(gate_class, label=label, ctrl_state=ctrl_state) # if __new__ does not return the same type as cls, init is not called gate.__init__(label=label, ctrl_state=ctrl_state) return gate return super().__new__(cls)
[ドキュメント] def __init__(self, num_ctrl_qubits, label=None, ctrl_state=None, _name='mcx'): """Create new MCX gate.""" num_ancilla_qubits = self.__class__.get_num_ancilla_qubits(num_ctrl_qubits) super().__init__(_name, num_ctrl_qubits + 1 + num_ancilla_qubits, [], num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state, base_gate=XGate())
[ドキュメント] def inverse(self): """Invert this gate. The MCX is its own inverse.""" return MCXGate(num_ctrl_qubits=self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
[ドキュメント] @staticmethod def get_num_ancilla_qubits(num_ctrl_qubits, mode='noancilla'): """Get the number of required ancilla qubits without instantiating the class. This staticmethod might be necessary to check the number of ancillas before creating the gate, or to use the number of ancillas in the initialization. """ if mode == 'noancilla': return 0 if mode in ['recursion', 'advanced']: return int(num_ctrl_qubits > 4) if mode[:7] == 'v-chain' or mode[:5] == 'basic': return max(0, num_ctrl_qubits - 2) raise AttributeError('Unsupported mode ({}) specified!'.format(mode))
def _define(self): """The standard definition used the Gray code implementation.""" # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(self.num_qubits, name='q') qc = QuantumCircuit(q) qc._append(MCXGrayCode(self.num_ctrl_qubits), q[:], []) self.definition = qc @property def num_ancilla_qubits(self): """The number of ancilla qubits.""" return self.__class__.get_num_ancilla_qubits(self.num_ctrl_qubits)
[ドキュメント] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a multi-controlled-X gate with more control lines. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if ctrl_state is None: # use __class__ so this works for derived classes gate = self.__class__(self.num_ctrl_qubits + num_ctrl_qubits, label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[ドキュメント]class MCXGrayCode(MCXGate): r"""Implement the multi-controlled X gate using the Gray code. This delegates the implementation to the MCU1 gate, since :math:`X = H \cdot U1(\pi) \cdot H`. """ def __new__(cls, num_ctrl_qubits=None, label=None, ctrl_state=None): """Create a new MCXGrayCode instance """ # if 1 to 4 control qubits, create explicit gates explicit = { 1: CXGate, 2: CCXGate, 3: C3XGate, 4: C4XGate } if num_ctrl_qubits in explicit.keys(): gate_class = explicit[num_ctrl_qubits] gate = gate_class.__new__(gate_class, label=label, ctrl_state=ctrl_state) # if __new__ does not return the same type as cls, init is not called gate.__init__(label=label, ctrl_state=ctrl_state) return gate return super().__new__(cls)
[ドキュメント] def __init__(self, num_ctrl_qubits, label=None, ctrl_state=None): super().__init__(num_ctrl_qubits, label=label, ctrl_state=ctrl_state, _name='mcx_gray')
[ドキュメント] def inverse(self): """Invert this gate. The MCX is its own inverse.""" return MCXGrayCode(num_ctrl_qubits=self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
def _define(self): """Define the MCX gate using the Gray code.""" # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import MCU1Gate q = QuantumRegister(self.num_qubits, name='q') qc = QuantumCircuit(q, name=self.name) qc._append(HGate(), [q[-1]], []) qc._append(MCU1Gate(numpy.pi, num_ctrl_qubits=self.num_ctrl_qubits), q[:], []) qc._append(HGate(), [q[-1]], []) self.definition = qc
[ドキュメント]class MCXRecursive(MCXGate): """Implement the multi-controlled X gate using recursion. Using a single ancilla qubit, the multi-controlled X gate is recursively split onto four sub-registers. This is done until we reach the 3- or 4-controlled X gate since for these we have a concrete implementation that do not require ancillas. """
[ドキュメント] def __init__(self, num_ctrl_qubits, label=None, ctrl_state=None): super().__init__(num_ctrl_qubits, label=label, ctrl_state=ctrl_state, _name='mcx_recursive')
[ドキュメント] @staticmethod def get_num_ancilla_qubits(num_ctrl_qubits, mode='recursion'): """Get the number of required ancilla qubits.""" return MCXGate.get_num_ancilla_qubits(num_ctrl_qubits, mode)
[ドキュメント] def inverse(self): """Invert this gate. The MCX is its own inverse.""" return MCXRecursive(num_ctrl_qubits=self.num_ctrl_qubits, ctrl_state=self.ctrl_state)
def _define(self): """Define the MCX gate using recursion.""" # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(self.num_qubits, name='q') qc = QuantumCircuit(q, name=self.name) if self.num_qubits == 4: qc._append(C3XGate(), q[:], []) self.definition = qc elif self.num_qubits == 5: qc._append(C4XGate(), q[:], []) self.definition = qc else: for instr, qargs, cargs in self._recurse(q[:-1], q_ancilla=q[-1]): qc._append(instr, qargs, cargs) self.definition = qc def _recurse(self, q, q_ancilla=None): # recursion stop if len(q) == 4: return [(C3XGate(), q[:], [])] if len(q) == 5: return [(C4XGate(), q[:], [])] if len(q) < 4: raise AttributeError('Something went wrong in the recursion, have less than 4 qubits.') # recurse num_ctrl_qubits = len(q) - 1 middle = ceil(num_ctrl_qubits / 2) first_half = [*q[:middle], q_ancilla] second_half = [*q[middle:num_ctrl_qubits], q_ancilla, q[num_ctrl_qubits]] rule = [] rule += self._recurse(first_half, q_ancilla=q[middle]) rule += self._recurse(second_half, q_ancilla=q[middle - 1]) rule += self._recurse(first_half, q_ancilla=q[middle]) rule += self._recurse(second_half, q_ancilla=q[middle - 1]) return rule
[ドキュメント]class MCXVChain(MCXGate): """Implement the multi-controlled X gate using a V-chain of CX gates.""" def __new__(cls, num_ctrl_qubits=None, dirty_ancillas=False, # pylint: disable=unused-argument label=None, ctrl_state=None): """Create a new MCX instance. This must be defined anew to include the additional argument ``dirty_ancillas``. """ return super().__new__(cls, num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[ドキュメント] def __init__(self, num_ctrl_qubits, dirty_ancillas=False, label=None, ctrl_state=None): super().__init__(num_ctrl_qubits, label=label, ctrl_state=ctrl_state, _name='mcx_vchain') self._dirty_ancillas = dirty_ancillas
[ドキュメント] def inverse(self): """Invert this gate. The MCX is its own inverse.""" return MCXVChain(num_ctrl_qubits=self.num_ctrl_qubits, dirty_ancillas=self._dirty_ancillas, ctrl_state=self.ctrl_state)
[ドキュメント] @staticmethod def get_num_ancilla_qubits(num_ctrl_qubits, mode='v-chain'): """Get the number of required ancilla qubits.""" return MCXGate.get_num_ancilla_qubits(num_ctrl_qubits, mode)
def _define(self): """Define the MCX gate using a V-chain of CX gates.""" # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit q = QuantumRegister(self.num_qubits, name='q') qc = QuantumCircuit(q, name=self.name) q_controls = q[:self.num_ctrl_qubits] q_target = q[self.num_ctrl_qubits] q_ancillas = q[self.num_ctrl_qubits + 1:] definition = [] if self._dirty_ancillas: i = self.num_ctrl_qubits - 3 ancilla_pre_rule = [ (U2Gate(0, numpy.pi), [q_target], []), (CXGate(), [q_target, q_ancillas[i]], []), (U1Gate(-numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_controls[-1], q_ancillas[i]], []), (U1Gate(numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_target, q_ancillas[i]], []), (U1Gate(-numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_controls[-1], q_ancillas[i]], []), (U1Gate(numpy.pi / 4), [q_ancillas[i]], []), ] for inst in ancilla_pre_rule: definition.append(inst) for j in reversed(range(2, self.num_ctrl_qubits - 1)): definition.append( (RCCXGate(), [q_controls[j], q_ancillas[i - 1], q_ancillas[i]], [])) i -= 1 definition.append((RCCXGate(), [q_controls[0], q_controls[1], q_ancillas[0]], [])) i = 0 for j in range(2, self.num_ctrl_qubits - 1): definition.append((RCCXGate(), [q_controls[j], q_ancillas[i], q_ancillas[i + 1]], [])) i += 1 if self._dirty_ancillas: ancilla_post_rule = [ (U1Gate(-numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_controls[-1], q_ancillas[i]], []), (U1Gate(numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_target, q_ancillas[i]], []), (U1Gate(-numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_controls[-1], q_ancillas[i]], []), (U1Gate(numpy.pi / 4), [q_ancillas[i]], []), (CXGate(), [q_target, q_ancillas[i]], []), (U2Gate(0, numpy.pi), [q_target], []), ] for inst in ancilla_post_rule: definition.append(inst) else: definition.append((CCXGate(), [q_controls[-1], q_ancillas[i], q_target], [])) for j in reversed(range(2, self.num_ctrl_qubits - 1)): definition.append((RCCXGate(), [q_controls[j], q_ancillas[i - 1], q_ancillas[i]], [])) i -= 1 definition.append((RCCXGate(), [q_controls[0], q_controls[1], q_ancillas[i]], [])) if self._dirty_ancillas: for i, j in enumerate(list(range(2, self.num_ctrl_qubits - 1))): definition.append( (RCCXGate(), [q_controls[j], q_ancillas[i], q_ancillas[i + 1]], [])) for instr, qargs, cargs in definition: qc._append(instr, qargs, cargs) self.definition = qc

© Copyright 2020, Qiskit Development Team. 最終更新: 2021/06/04

Built with Sphinx using a theme provided by Read the Docs.