French
Langues
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.optimization.QuadraticProgram

class QuadraticProgram(name='')[source]

Quadratically Constrained Quadratic Program representation.

This representation supports inequality and equality constraints, as well as continuous, binary, and integer variables.

Paramètres

name (str) – The name of the quadratic program.

__init__(name='')[source]
Paramètres

name (str) – The name of the quadratic program.

Methods

__init__([name])

type name

str

binary_var([name])

Adds a binary variable to the quadratic program.

clear()

Clears the quadratic program, i.e., deletes all variables, constraints, the objective function as well as the name.

continuous_var([lowerbound, upperbound, name])

Adds a continuous variable to the quadratic program.

export_as_lp_string()

Returns the quadratic program as a string of LP format.

from_docplex(model)

Loads this quadratic program from a docplex model.

from_ising(qubit_op[, offset, linear])

Create a quadratic program from a qubit operator and a shift value.

get_feasibility_info(x)

Returns whether a solution is feasible or not along with the violations.

get_linear_constraint(i)

Returns a linear constraint for a given name or index.

get_num_binary_vars()

Returns the total number of binary variables.

get_num_continuous_vars()

Returns the total number of continuous variables.

get_num_integer_vars()

Returns the total number of integer variables.

get_num_linear_constraints()

Returns the number of linear constraints.

get_num_quadratic_constraints()

Returns the number of quadratic constraints.

get_num_vars([vartype])

Returns the total number of variables or the number of variables of the specified type.

get_quadratic_constraint(i)

Returns a quadratic constraint for a given name or index.

get_variable(i)

Returns a variable for a given name or index.

integer_var([lowerbound, upperbound, name])

Adds an integer variable to the quadratic program.

is_feasible(x)

Returns whether a solution is feasible or not.

linear_constraint([linear, sense, rhs, name])

Adds a linear equality constraint to the quadratic program of the form:

maximize([constant, linear, quadratic])

Sets a quadratic objective to be maximized.

minimize([constant, linear, quadratic])

Sets a quadratic objective to be minimized.

pprint_as_string()

DEPRECATED Returns the quadratic program as a string in Docplex’s pretty print format.

prettyprint([out])

DEPRECATED Pretty prints the quadratic program to a given output stream (None = default).

quadratic_constraint([linear, quadratic, …])

Adds a quadratic equality constraint to the quadratic program of the form:

read_from_lp_file(filename)

Loads the quadratic program from a LP file.

remove_linear_constraint(i)

Remove a linear constraint

remove_quadratic_constraint(i)

Remove a quadratic constraint

substitute_variables([constants, variables])

Substitutes variables with constants or other variables.

to_docplex()

Returns a docplex model corresponding to this quadratic program.

to_ising()

Return the Ising Hamiltonian of this problem.

write_to_lp_file(filename)

Writes the quadratic program to an LP file.

Attributes

linear_constraints

Returns the list of linear constraints of the quadratic program.

linear_constraints_index

Returns the dictionary that maps the name of a linear constraint to its index.

name

Returns the name of the quadratic program.

objective

Returns the quadratic objective.

quadratic_constraints

Returns the list of quadratic constraints of the quadratic program.

quadratic_constraints_index

Returns the dictionary that maps the name of a quadratic constraint to its index.

status

Status of the quadratic program.

variables

Returns the list of variables of the quadratic program.

variables_index

Returns the dictionary that maps the name of a variable to its index.

Status

alias de QuadraticProgramStatus

binary_var(name=None)[source]

Adds a binary variable to the quadratic program.

Paramètres

name (Optional[str]) – The name of the variable.

Type renvoyé

Variable

Renvoie

The added variable.

Lève

QiskitOptimizationError – if the variable name is already occupied.

clear()[source]

Clears the quadratic program, i.e., deletes all variables, constraints, the objective function as well as the name.

Type renvoyé

None

continuous_var(lowerbound=0, upperbound=1e+20, name=None)[source]

Adds a continuous variable to the quadratic program.

Paramètres
  • lowerbound (Union[float, int]) – The lowerbound of the variable.

  • upperbound (Union[float, int]) – The upperbound of the variable.

  • name (Optional[str]) – The name of the variable.

Type renvoyé

Variable

Renvoie

The added variable.

Lève

QiskitOptimizationError – if the variable name is already occupied.

export_as_lp_string()[source]

Returns the quadratic program as a string of LP format.

Type renvoyé

str

Renvoie

A string representing the quadratic program.

from_docplex(model)[source]

Loads this quadratic program from a docplex model.

Note that this supports only basic functions of docplex as follows: - quadratic objective function - linear / quadratic constraints - binary / integer / continuous variables

Paramètres

model (Model) – The docplex model to be loaded.

Lève

QiskitOptimizationError – if the model contains unsupported elements.

Type renvoyé

None

from_ising(qubit_op, offset=0.0, linear=False)[source]

Create a quadratic program from a qubit operator and a shift value.

Paramètres
  • qubit_op (Union[OperatorBase, WeightedPauliOperator]) – The qubit operator of the problem.

  • offset (float) – The constant value in the Ising Hamiltonian.

  • linear (bool) – If linear is True, \(x^2\) is treated as a linear term since \(x^2 = x\) for \(x \in \{0,1\}\). Else, \(x^2\) is treat as a quadratic term. The default value is False.

Lève
Type renvoyé

None

get_feasibility_info(x)[source]

Returns whether a solution is feasible or not along with the violations. :type x: Union[List[float], ndarray] :param x: a solution value, such as returned in an optimizer result.

Renvoie

Whether the solution provided is feasible or not. List[Variable]: List of variables which are violated. List[Constraint]: List of constraints which are violated.

Type renvoyé

feasible

Lève

QiskitOptimizationError – If the input x is not same len as total vars

get_linear_constraint(i)[source]

Returns a linear constraint for a given name or index.

Paramètres

i (Union[int, str]) – the index or name of the constraint.

Type renvoyé

LinearConstraint

Renvoie

The corresponding constraint.

Lève
  • IndexError – if the index is out of the list size

  • KeyError – if the name does not exist

get_num_binary_vars()[source]

Returns the total number of binary variables.

Type renvoyé

int

Renvoie

The total number of binary variables.

get_num_continuous_vars()[source]

Returns the total number of continuous variables.

Type renvoyé

int

Renvoie

The total number of continuous variables.

get_num_integer_vars()[source]

Returns the total number of integer variables.

Type renvoyé

int

Renvoie

The total number of integer variables.

get_num_linear_constraints()[source]

Returns the number of linear constraints.

Type renvoyé

int

Renvoie

The number of linear constraints.

get_num_quadratic_constraints()[source]

Returns the number of quadratic constraints.

Type renvoyé

int

Renvoie

The number of quadratic constraints.

get_num_vars(vartype=None)[source]

Returns the total number of variables or the number of variables of the specified type.

Paramètres

vartype (Optional[VarType]) – The type to be filtered on. All variables are counted if None.

Type renvoyé

int

Renvoie

The total number of variables.

get_quadratic_constraint(i)[source]

Returns a quadratic constraint for a given name or index.

Paramètres

i (Union[int, str]) – the index or name of the constraint.

Type renvoyé

QuadraticConstraint

Renvoie

The corresponding constraint.

Lève
  • IndexError – if the index is out of the list size

  • KeyError – if the name does not exist

get_variable(i)[source]

Returns a variable for a given name or index.

Paramètres

i (Union[int, str]) – the index or name of the variable.

Type renvoyé

Variable

Renvoie

The corresponding variable.

integer_var(lowerbound=0, upperbound=1e+20, name=None)[source]

Adds an integer variable to the quadratic program.

Paramètres
  • lowerbound (Union[float, int]) – The lowerbound of the variable.

  • upperbound (Union[float, int]) – The upperbound of the variable.

  • name (Optional[str]) – The name of the variable.

Type renvoyé

Variable

Renvoie

The added variable.

Lève

QiskitOptimizationError – if the variable name is already occupied.

is_feasible(x)[source]

Returns whether a solution is feasible or not.

Paramètres

x (Union[List[float], ndarray]) – a solution value, such as returned in an optimizer result.

Type renvoyé

bool

Renvoie

True if the solution provided is feasible otherwise False.

linear_constraint(linear=None, sense='<=', rhs=0.0, name=None)[source]
Adds a linear equality constraint to the quadratic program of the form:

linear * x sense rhs.

Paramètres
  • linear (Union[ndarray, spmatrix, List[float], Dict[Union[int, str], float], None]) – The linear coefficients of the left-hand-side of the constraint.

  • sense (Union[str, ConstraintSense]) – The sense of the constraint, - “==”, “=”, “E”, and “EQ” denote “equal to”. - “>=”, “>”, “G”, and “GE” denote “greater-than-or-equal-to”. - “<=”, “<”, “L”, and “LE” denote “less-than-or-equal-to”.

  • rhs (float) – The right hand side of the constraint.

  • name (Optional[str]) – The name of the constraint.

Type renvoyé

LinearConstraint

Renvoie

The added constraint.

Lève

QiskitOptimizationError – if the constraint name already exists or the sense is not valid.

property linear_constraints

Returns the list of linear constraints of the quadratic program.

Type renvoyé

List[LinearConstraint]

Renvoie

List of linear constraints.

property linear_constraints_index

Returns the dictionary that maps the name of a linear constraint to its index.

Type renvoyé

Dict[str, int]

Renvoie

The linear constraint index dictionary.

maximize(constant=0.0, linear=None, quadratic=None)[source]

Sets a quadratic objective to be maximized.

Paramètres
  • constant (float) – the constant offset of the objective.

  • linear (Union[ndarray, spmatrix, List[float], Dict[Union[int, str], float], None]) – the coefficients of the linear part of the objective.

  • quadratic (Union[ndarray, spmatrix, List[List[float]], Dict[Tuple[Union[int, str], Union[int, str]], float], None]) – the coefficients of the quadratic part of the objective.

Type renvoyé

None

Renvoie

The created quadratic objective.

minimize(constant=0.0, linear=None, quadratic=None)[source]

Sets a quadratic objective to be minimized.

Paramètres
  • constant (float) – the constant offset of the objective.

  • linear (Union[ndarray, spmatrix, List[float], Dict[Union[int, str], float], None]) – the coefficients of the linear part of the objective.

  • quadratic (Union[ndarray, spmatrix, List[List[float]], Dict[Tuple[Union[int, str], Union[int, str]], float], None]) – the coefficients of the quadratic part of the objective.

Type renvoyé

None

Renvoie

The created quadratic objective.

property name

Returns the name of the quadratic program.

Type renvoyé

str

Renvoie

The name of the quadratic program.

property objective

Returns the quadratic objective.

Type renvoyé

QuadraticObjective

Renvoie

The quadratic objective.

pprint_as_string()[source]

DEPRECATED Returns the quadratic program as a string in Docplex’s pretty print format. :rtype: str :returns: A string representing the quadratic program.

prettyprint(out=None)[source]

DEPRECATED Pretty prints the quadratic program to a given output stream (None = default).

Paramètres

out (Optional[str]) – The output stream or file name to print to. if you specify a file name, the output file name is has “.mod” as suffix.

Type renvoyé

None

quadratic_constraint(linear=None, quadratic=None, sense='<=', rhs=0.0, name=None)[source]
Adds a quadratic equality constraint to the quadratic program of the form:

x * Q * x <= rhs.

Paramètres
  • linear (Union[ndarray, spmatrix, List[float], Dict[Union[int, str], float], None]) – The linear coefficients of the constraint.

  • quadratic (Union[ndarray, spmatrix, List[List[float]], Dict[Tuple[Union[int, str], Union[int, str]], float], None]) – The quadratic coefficients of the constraint.

  • sense (Union[str, ConstraintSense]) – The sense of the constraint, - “==”, “=”, “E”, and “EQ” denote “equal to”. - “>=”, “>”, “G”, and “GE” denote “greater-than-or-equal-to”. - “<=”, “<”, “L”, and “LE” denote “less-than-or-equal-to”.

  • rhs (float) – The right hand side of the constraint.

  • name (Optional[str]) – The name of the constraint.

Type renvoyé

QuadraticConstraint

Renvoie

The added constraint.

Lève

QiskitOptimizationError – if the constraint name already exists.

property quadratic_constraints

Returns the list of quadratic constraints of the quadratic program.

Type renvoyé

List[QuadraticConstraint]

Renvoie

List of quadratic constraints.

property quadratic_constraints_index

Returns the dictionary that maps the name of a quadratic constraint to its index.

Type renvoyé

Dict[str, int]

Renvoie

The quadratic constraint index dictionary.

read_from_lp_file(filename)[source]

Loads the quadratic program from a LP file.

Paramètres

filename (str) – The filename of the file to be loaded.

Lève

Note

This method requires CPLEX to be installed and present in PYTHONPATH.

Type renvoyé

None

remove_linear_constraint(i)[source]

Remove a linear constraint

Paramètres

i (Union[str, int]) – an index or a name of a linear constraint

Lève
  • KeyError – if name does not exist

  • IndexError – if index is out of range

Type renvoyé

None

remove_quadratic_constraint(i)[source]

Remove a quadratic constraint

Paramètres

i (Union[str, int]) – an index or a name of a quadratic constraint

Lève
  • KeyError – if name does not exist

  • IndexError – if index is out of range

Type renvoyé

None

property status

Status of the quadratic program. It can be infeasible due to variable substitution.

Type renvoyé

QuadraticProgramStatus

Renvoie

The status of the quadratic program

substitute_variables(constants=None, variables=None)[source]

Substitutes variables with constants or other variables.

Paramètres
  • constants (Optional[Dict[Union[int, str], float]]) – replace variable by constant e.g., {“x”: 2} means “x” is substituted with 2

  • variables (Optional[Dict[Union[str, int], Tuple[Union[str, int], float]]]) – replace variables by weighted other variable need to copy everything using name reference to make sure that indices are matched correctly. The lower and upper bounds are updated accordingly. e.g., {“x”: (“y”, 2)} means “x” is substituted with “y” * 2

Type renvoyé

QuadraticProgram

Renvoie

An optimization problem by substituting variables with constants or other variables. If the substitution is valid, QuadraticProgram.status is still QuadraticProgram.Status.VALIAD. Otherwise, it gets QuadraticProgram.Status.INFEASIBLE.

Lève

QiskitOptimizationError – if the substitution is invalid as follows. - Same variable is substituted multiple times. - Coefficient of variable substitution is zero.

to_docplex()[source]

Returns a docplex model corresponding to this quadratic program.

Type renvoyé

Model

Renvoie

The docplex model corresponding to this quadratic program.

Lève

QiskitOptimizationError – if non-supported elements (should never happen).

to_ising()[source]

Return the Ising Hamiltonian of this problem.

Renvoie

The qubit operator for the problem offset: The constant value in the Ising Hamiltonian.

Type renvoyé

qubit_op

Lève
property variables

Returns the list of variables of the quadratic program.

Type renvoyé

List[Variable]

Renvoie

List of variables.

property variables_index

Returns the dictionary that maps the name of a variable to its index.

Type renvoyé

Dict[str, int]

Renvoie

The variable index dictionary.

write_to_lp_file(filename)[source]

Writes the quadratic program to an LP file.

Paramètres

filename (str) – The filename of the file the model is written to. If filename is a directory, file name “my_problem.lp” is appended. If filename does not end with “.lp”, suffix “.lp” is appended.

Lève
  • OSError – If this cannot open a file.

  • DOcplexException – If filename is an empty string

Type renvoyé

None