French
Langues
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.algorithms.EOH

class EOH(operator, initial_state, evo_operator, evo_time=1, num_time_slices=1, expansion_mode='trotter', expansion_order=1, quantum_instance=None)[source]

The Quantum EOH (Evolution of Hamiltonian) algorithm.

EOH provides the lower-level building blocks for simulating universal quantum systems. For any given quantum system that can be decomposed into local interactions (for example, a global hamiltonian as the weighted sum of several Pauli spin operators), the local interactions can then be used to approximate the global quantum system via, for example, Lloyd’s method or Trotter-Suzuki decomposition.

Paramètres
  • operator (LegacyBaseOperator) – Operator to evaluate

  • initial_state (InitialState) – Initial state for evolution

  • evo_operator (LegacyBaseOperator) – Operator to evolve

  • evo_time (float) – Evolution time, has min value of 0

  • num_time_slices (int) – Number of time slices, has minimum value of 1

  • expansion_mode (str) – Either "trotter" (Lloyd’s method) or "suzuki" (for Trotter-Suzuki expansion)

  • expansion_order (int) – The Trotter-Suzuki expansion order.

  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

__init__(operator, initial_state, evo_operator, evo_time=1, num_time_slices=1, expansion_mode='trotter', expansion_order=1, quantum_instance=None)[source]
Paramètres
  • operator (LegacyBaseOperator) – Operator to evaluate

  • initial_state (InitialState) – Initial state for evolution

  • evo_operator (LegacyBaseOperator) – Operator to evolve

  • evo_time (float) – Evolution time, has min value of 0

  • num_time_slices (int) – Number of time slices, has minimum value of 1

  • expansion_mode (str) – Either "trotter" (Lloyd’s method) or "suzuki" (for Trotter-Suzuki expansion)

  • expansion_order (int) – The Trotter-Suzuki expansion order.

  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

Methods

__init__(operator, initial_state, evo_operator)

type operator

LegacyBaseOperator

construct_circuit()

Construct the circuit.

run([quantum_instance])

Execute the algorithm with selected backend.

set_backend(backend, **kwargs)

Sets backend with configuration.

Attributes

backend

Returns backend.

quantum_instance

Returns quantum instance.

random

Return a numpy random.

property backend

Returns backend.

Type renvoyé

Union[Backend, BaseBackend]

construct_circuit()[source]

Construct the circuit.

Renvoie

the circuit.

Type renvoyé

QuantumCircuit

property quantum_instance

Returns quantum instance.

Type renvoyé

Optional[QuantumInstance]

property random

Return a numpy random.

run(quantum_instance=None, **kwargs)

Execute the algorithm with selected backend.

Paramètres
  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – the experimental setting.

  • kwargs (dict) – kwargs

Renvoie

results of an algorithm.

Type renvoyé

dict

Lève

AquaError – If a quantum instance or backend has not been provided

set_backend(backend, **kwargs)

Sets backend with configuration.

Type renvoyé

None