qiskit.circuit.library.RZXGate¶
-
class
RZXGate
(theta)[Quellcode]¶ A parameteric 2-qubit \(Z \otimes X\) interaction (rotation about ZX).
This gate is maximally entangling at \(\theta = \pi/2\).
The cross-resonance gate (CR) for superconducting qubits implements a ZX interaction (however other terms are also present in an experiment).
Circuit Symbol:
┌─────────┐ q_0: ┤0 ├ │ Rzx(θ) │ q_1: ┤1 ├ └─────────┘
Matrix Representation:
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZX}(\theta)\ q_0, q_1 = exp(-i \frac{\theta}{2} X{\otimes}Z) = \begin{pmatrix} \cos(\th) & 0 & -i\sin(\th) & 0 \\ 0 & \cos(\th) & 0 & i\sin(\th) \\ -i\sin(\th) & 0 & \cos(\th) & 0 \\ 0 & i\sin(\th) & 0 & \cos(\th) \end{pmatrix}\end{split}\end{aligned}\end{align} \]Bemerkung
In Qiskit’s convention, higher qubit indices are more significant (little endian convention). In the above example we apply the gate on (q_0, q_1) which results in the \(X \otimes Z\) tensor order. Instead, if we apply it on (q_1, q_0), the matrix will be \(Z \otimes X\):
┌─────────┐ q_0: ┤1 ├ │ Rzx(θ) │ q_1: ┤0 ├ └─────────┘
\[ \begin{align}\begin{aligned}\newcommand{\th}{\frac{\theta}{2}}\\\begin{split}R_{ZX}(\theta)\ q_1, q_0 = exp(-i \frac{\theta}{2} Z{\otimes}X) = \begin{pmatrix} \cos(\th) & -i\sin(\th) & 0 & 0 \\ -i\sin(\th) & \cos(\th) & 0 & 0 \\ 0 & 0 & \cos(\th) & i\sin(\th) \\ 0 & 0 & i\sin(\th) & \cos(\th) \end{pmatrix}\end{split}\end{aligned}\end{align} \]This is a direct sum of RX rotations, so this gate is equivalent to a uniformly controlled (multiplexed) RX gate:
\[\begin{split}R_{ZX}(\theta)\ q_1, q_0 = \begin{pmatrix} RX(\theta) & 0 \\ 0 & RX(-\theta) \end{pmatrix}\end{split}\]Examples:
\[R_{ZX}(\theta = 0) = I\]\[R_{ZX}(\theta = 2\pi) = -I\]\[R_{ZX}(\theta = \pi) = -i Z \otimes X\]\[\begin{split}RZX(\theta = \frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & -i & 0 \\ 0 & 1 & 0 & i \\ -i & 0 & 1 & 0 \\ 0 & i & 0 & 1 \end{pmatrix}\end{split}\]Create new RZX gate.
-
__init__
(theta)[Quellcode]¶ Create new RZX gate.
Methods
__init__
(theta)Create new RZX gate.
add_decomposition
(decomposition)Add a decomposition of the instruction to the SessionEquivalenceLibrary.
assemble
()Assemble a QasmQobjInstruction
broadcast_arguments
(qargs, cargs)Validation and handling of the arguments and its relationship.
c_if
(classical, val)Add classical condition on register classical and value val.
control
([num_ctrl_qubits, label, ctrl_state])Return controlled version of gate.
copy
([name])Copy of the instruction.
inverse
()Return inverse RZX gate (i.e.
Return True .IFF.
mirror
()DEPRECATED: use instruction.reverse_ops().
power
(exponent)Creates a unitary gate as gate^exponent.
qasm
()Return a default OpenQASM string for the instruction.
repeat
(n)Creates an instruction with gate repeated n amount of times.
For a composite instruction, reverse the order of sub-instructions.
Return a numpy.array for the RZX gate.
validate_parameter
(parameter)Gate parameters should be int, float, or ParameterExpression
Attributes
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
Return definition in terms of other basic gates.
Get the duration.
Return gate label
return instruction params.
Get the time unit of duration.
-
add_decomposition
(decomposition)¶ Add a decomposition of the instruction to the SessionEquivalenceLibrary.
-
assemble
()¶ Assemble a QasmQobjInstruction
- Rückgabetyp
Instruction
-
broadcast_arguments
(qargs, cargs)¶ Validation and handling of the arguments and its relationship.
For example,
cx([q[0],q[1]], q[2])
meanscx(q[0], q[2]); cx(q[1], q[2])
. This method yields the arguments in the right grouping. In the given example:in: [[q[0],q[1]], q[2]],[] outs: [q[0], q[2]], [] [q[1], q[2]], []
The general broadcasting rules are:
If len(qargs) == 1:
[q[0], q[1]] -> [q[0]],[q[1]]
If len(qargs) == 2:
[[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]] [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]] [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
If len(qargs) >= 3:
[q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
- Parameter
qargs (
List
) – List of quantum bit arguments.cargs (
List
) – List of classical bit arguments.
- Rückgabetyp
Tuple
[List
,List
]- Rückgabe
A tuple with single arguments.
- Verursacht
CircuitError – If the input is not valid. For example, the number of arguments does not match the gate expectation.
-
c_if
(classical, val)¶ Add classical condition on register classical and value val.
-
control
(num_ctrl_qubits=1, label=None, ctrl_state=None)¶ Return controlled version of gate. See
ControlledGate
for usage.- Parameter
num_ctrl_qubits (
Optional
[int
]) – number of controls to add to gate (default=1)label (
Optional
[str
]) – optional gate labelctrl_state (
Union
[int
,str
,None
]) – The control state in decimal or as a bitstring (e.g. ‚111‘). If None, use 2**num_ctrl_qubits-1.
- Rückgabe
Controlled version of gate. This default algorithm uses num_ctrl_qubits-1 ancillae qubits so returns a gate of size num_qubits + 2*num_ctrl_qubits - 1.
- Rückgabetyp
- Verursacht
QiskitError – unrecognized mode or invalid ctrl_state
-
copy
(name=None)¶ Copy of the instruction.
- Parameter
name (str) – name to be given to the copied circuit, if None then the name stays the same.
- Rückgabe
- a copy of the current instruction, with the name
updated if it was provided
- Rückgabetyp
-
property
decompositions
¶ Get the decompositions of the instruction from the SessionEquivalenceLibrary.
-
property
definition
¶ Return definition in terms of other basic gates.
-
property
duration
¶ Get the duration.
-
inverse
()[Quellcode]¶ Return inverse RZX gate (i.e. with the negative rotation angle).
-
is_parameterized
()¶ Return True .IFF. instruction is parameterized else False
-
property
label
¶ Return gate label
- Rückgabetyp
str
-
mirror
()¶ DEPRECATED: use instruction.reverse_ops().
- Rückgabe
- a new instruction with sub-instructions
reversed.
- Rückgabetyp
-
property
params
¶ return instruction params.
-
power
(exponent)¶ Creates a unitary gate as gate^exponent.
- Parameter
exponent (float) – Gate^exponent
- Rückgabe
To which to_matrix is self.to_matrix^exponent.
- Rückgabetyp
- Verursacht
CircuitError – If Gate is not unitary
-
qasm
()¶ Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. measure q[0] -> c[0];).
-
repeat
(n)¶ Creates an instruction with gate repeated n amount of times.
- Parameter
n (int) – Number of times to repeat the instruction
- Rückgabe
Containing the definition.
- Rückgabetyp
- Verursacht
CircuitError – If n < 1.
-
reverse_ops
()¶ For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
- Rückgabe
- a new instruction with
sub-instructions reversed.
- Rückgabetyp
-
to_matrix
()[Quellcode]¶ Return a numpy.array for the RZX gate.
-
property
unit
¶ Get the time unit of duration.
-
validate_parameter
(parameter)¶ Gate parameters should be int, float, or ParameterExpression
-