German
Sprachen
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

qiskit.aqua.algorithms.IQPE

class IQPE(operator=None, state_in=None, num_time_slices=1, num_iterations=1, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=False, quantum_instance=None)[Quellcode]

The Iterative Quantum Phase Estimation algorithm.

IQPE, as its name suggests, iteratively computes the phase so as to require fewer qubits. It takes has the same set of parameters as QPE, except for the number of ancillary qubits num_ancillae, being replaced by num_iterations and that an Inverse Quantum Fourier Transform (IQFT) is not used for IQPE.

Reference:

[1]: Dobsicek et al. (2006), Arbitrary accuracy iterative phase estimation algorithm as a two

qubit benchmark, arxiv/quant-ph/0610214

Parameter
  • operator (Union[OperatorBase, LegacyBaseOperator, None]) – The hamiltonian Operator

  • state_in (Optional[InitialState]) – An InitialState component representing an initial quantum state.

  • num_time_slices (int) – The number of time slices, has a minimum value of 1.

  • num_iterations (int) – The number of iterations, has a minimum value of 1.

  • expansion_mode (str) – The expansion mode (‚trotter‘|‘suzuki‘)

  • expansion_order (int) – The suzuki expansion order, has a min. value of 1.

  • shallow_circuit_concat (bool) – Set True to use shallow (cheap) mode for circuit concatenation of evolution slices. By default this is False.

  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

__init__(operator=None, state_in=None, num_time_slices=1, num_iterations=1, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=False, quantum_instance=None)[Quellcode]
Parameter
  • operator (Union[OperatorBase, LegacyBaseOperator, None]) – The hamiltonian Operator

  • state_in (Optional[InitialState]) – An InitialState component representing an initial quantum state.

  • num_time_slices (int) – The number of time slices, has a minimum value of 1.

  • num_iterations (int) – The number of iterations, has a minimum value of 1.

  • expansion_mode (str) – The expansion mode (‚trotter‘|‘suzuki‘)

  • expansion_order (int) – The suzuki expansion order, has a min. value of 1.

  • shallow_circuit_concat (bool) – Set True to use shallow (cheap) mode for circuit concatenation of evolution slices. By default this is False.

  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – Quantum Instance or Backend

Methods

__init__([operator, state_in, …])

type operator

Union[OperatorBase, LegacyBaseOperator, None]

compute_minimum_eigenvalue([operator, …])

Computes minimum eigenvalue.

construct_circuit([k, omega, measurement])

Construct the kth iteration Quantum Phase Estimation circuit.

run([quantum_instance])

Execute the algorithm with selected backend.

set_backend(backend, **kwargs)

Sets backend with configuration.

supports_aux_operators()

Whether computing the expectation value of auxiliary operators is supported.

Attributes

aux_operators

Returns aux operators

backend

Returns backend.

operator

Returns operator

quantum_instance

Returns quantum instance.

random

Return a numpy random.

property aux_operators

Returns aux operators

Rückgabetyp

Optional[List[Union[OperatorBase, LegacyBaseOperator]]]

property backend

Returns backend.

Rückgabetyp

Union[Backend, BaseBackend]

compute_minimum_eigenvalue(operator=None, aux_operators=None)[Quellcode]

Computes minimum eigenvalue. Operator and aux_operators can be supplied here and if not None will override any already set into algorithm so it can be reused with different operators. While an operator is required by algorithms, aux_operators are optional. To ‚remove‘ a previous aux_operators array use an empty list here.

Parameter
  • operator (Union[OperatorBase, LegacyBaseOperator, None]) – If not None replaces operator in algorithm

  • aux_operators (Optional[List[Union[OperatorBase, LegacyBaseOperator]]]) – If not None replaces aux_operators in algorithm

Rückgabetyp

MinimumEigensolverResult

Rückgabe

MinimumEigensolverResult

construct_circuit(k=None, omega=0, measurement=False)[Quellcode]

Construct the kth iteration Quantum Phase Estimation circuit.

For details of parameters, please see Fig. 2 in https://arxiv.org/pdf/quant-ph/0610214.pdf.

Parameter
  • k (Optional[int]) – the iteration idx.

  • omega (float) – the feedback angle.

  • measurement (bool) – Boolean flag to indicate if measurement should be included in the circuit.

Rückgabe

the quantum circuit per iteration

Rückgabetyp

QuantumCircuit

property operator

Returns operator

Rückgabetyp

Union[OperatorBase, LegacyBaseOperator, None]

property quantum_instance

Returns quantum instance.

Rückgabetyp

Optional[QuantumInstance]

property random

Return a numpy random.

run(quantum_instance=None, **kwargs)

Execute the algorithm with selected backend.

Parameter
  • quantum_instance (Union[QuantumInstance, Backend, BaseBackend, None]) – the experimental setting.

  • kwargs (dict) – kwargs

Rückgabe

results of an algorithm.

Rückgabetyp

dict

Verursacht

AquaError – If a quantum instance or backend has not been provided

set_backend(backend, **kwargs)

Sets backend with configuration.

Rückgabetyp

None

classmethod supports_aux_operators()

Whether computing the expectation value of auxiliary operators is supported.

If the minimum eigensolver computes an eigenstate of the main operator then it can compute the expectation value of the aux_operators for that state. Otherwise they will be ignored.

Rückgabetyp

bool

Rückgabe

True if aux_operator expectations can be evaluated, False otherwise