German
Sprachen
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Quellcode für qiskit.circuit.library.standard_gates.y

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Y and CY gates."""

import numpy
from qiskit.qasm import pi
# pylint: disable=cyclic-import
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[Doku]class YGate(Gate): r"""The single-qubit Pauli-Y gate (:math:`\sigma_y`). **Matrix Representation:** .. math:: Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} **Circuit symbol:** .. parsed-literal:: ┌───┐ q_0: ┤ Y ├ └───┘ Equivalent to a :math:`\pi` radian rotation about the Y axis. .. note:: A global phase difference exists between the definitions of :math:`RY(\pi)` and :math:`Y`. .. math:: RY(\pi) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -i Y The gate is equivalent to a bit and phase flip. .. math:: |0\rangle \rightarrow i|1\rangle \\ |1\rangle \rightarrow -i|0\rangle """
[Doku] def __init__(self, label=None): """Create new Y gate.""" super().__init__('y', 1, [], label=label)
def _define(self): # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u3 import U3Gate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U3Gate(pi, pi / 2, pi / 2), [q[0]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[Doku] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a (mutli-)controlled-Y gate. One control returns a CY gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CYGate(label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[Doku] def inverse(self): r"""Return inverted Y gate (:math:`Y{\dagger} = Y`)""" return YGate() # self-inverse
[Doku] def to_matrix(self): """Return a numpy.array for the Y gate.""" return numpy.array([[0, -1j], [1j, 0]], dtype=complex)
[Doku]class CYGate(ControlledGate): r"""Controlled-Y gate. **Circuit symbol:** .. parsed-literal:: q_0: ──■── ┌─┴─┐ q_1: ┤ Y ├ └───┘ **Matrix representation:** .. math:: CY\ q_0, q_1 = I \otimes |0 \rangle\langle 0| + Y \otimes |1 \rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 1 & 0 \\ 0 & i & 0 & 0 \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───┐ q_0: ┤ Y ├ └─┬─┘ q_1: ──■── .. math:: CY\ q_1, q_0 = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes Y = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix} """ # Define class constants. This saves future allocation time. _matrix1 = numpy.array([[1, 0, 0, 0], [0, 0, 0, -1j], [0, 0, 1, 0], [0, 1j, 0, 0]], dtype=complex) _matrix0 = numpy.array([[0, 0, -1j, 0], [0, 1, 0, 0], [1j, 0, 0, 0], [0, 0, 0, 1]], dtype=complex)
[Doku] def __init__(self, label=None, ctrl_state=None): """Create new CY gate.""" super().__init__('cy', 2, [], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=YGate())
def _define(self): """ gate cy a,b { sdg b; cx a,b; s b; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .s import SGate, SdgGate from .x import CXGate q = QuantumRegister(2, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (SdgGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []), (SGate(), [q[1]], []) ] for instr, qargs, cargs in rules: qc._append(instr, qargs, cargs) self.definition = qc
[Doku] def inverse(self): """Return inverted CY gate (itself).""" return CYGate(ctrl_state=self.ctrl_state) # self-inverse
[Doku] def to_matrix(self): """Return a numpy.array for the CY gate.""" if self.ctrl_state: return self._matrix1 else: return self._matrix0

© Copyright 2020, Qiskit Development Team. Zuletzt aktualisiert am 2021/06/04.

Built with Sphinx using a theme provided by Read the Docs.