English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.transpiler.passes.routing.stochastic_swap

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Map a DAGCircuit onto a `coupling_map` adding swap gates."""

from logging import getLogger
from math import inf
from collections import OrderedDict
import numpy as np

from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.transpiler.basepasses import TransformationPass
from qiskit.transpiler.exceptions import TranspilerError
from qiskit.dagcircuit import DAGCircuit
from qiskit.circuit.library.standard_gates import SwapGate
from qiskit.transpiler.layout import Layout
# pylint: disable=no-name-in-module
from .cython.stochastic_swap.utils import nlayout_from_layout
# pylint: disable=no-name-in-module
from .cython.stochastic_swap.swap_trial import swap_trial


logger = getLogger(__name__)


[docs]class StochasticSwap(TransformationPass): """Map a DAGCircuit onto a `coupling_map` adding swap gates. Uses a randomized algorithm. Notes: 1. Measurements may occur and be followed by swaps that result in repeated measurement of the same qubit. Near-term experiments cannot implement these circuits, so some care is required when using this mapper with experimental backend targets. 2. We do not use the fact that the input state is zero to simplify the circuit. """
[docs] def __init__(self, coupling_map, trials=20, seed=None): """StochasticSwap initializer. The coupling map is a connected graph If these are not satisfied, the behavior is undefined. Args: coupling_map (CouplingMap): Directed graph representing a coupling map. trials (int): maximum number of iterations to attempt seed (int): seed for random number generator """ super().__init__() self.coupling_map = coupling_map self.trials = trials self.seed = seed self.qregs = None self.rng = None self.trivial_layout = None
[docs] def run(self, dag): """Run the StochasticSwap pass on `dag`. Args: dag (DAGCircuit): DAG to map. Returns: DAGCircuit: A mapped DAG. Raises: TranspilerError: if the coupling map or the layout are not compatible with the DAG """ if len(dag.qregs) != 1 or dag.qregs.get('q', None) is None: raise TranspilerError('StochasticSwap runs on physical circuits only') if len(dag.qubits) > len(self.coupling_map.physical_qubits): raise TranspilerError('The layout does not match the amount of qubits in the DAG') canonical_register = dag.qregs['q'] self.trivial_layout = Layout.generate_trivial_layout(canonical_register) self.qregs = dag.qregs if self.seed is None: self.seed = np.random.randint(0, np.iinfo(np.int32).max) self.rng = np.random.default_rng(self.seed) logger.debug("StochasticSwap default_rng seeded with seed=%s", self.seed) new_dag = self._mapper(dag, self.coupling_map, trials=self.trials) return new_dag
def _layer_permutation(self, layer_partition, layout, qubit_subset, coupling, trials): """Find a swap circuit that implements a permutation for this layer. The goal is to swap qubits such that qubits in the same two-qubit gates are adjacent. Based on S. Bravyi's algorithm. Args: layer_partition (list): The layer_partition is a list of (qu)bit lists and each qubit is a tuple (qreg, index). layout (Layout): The layout is a Layout object mapping virtual qubits in the input circuit to physical qubits in the coupling graph. It reflects the current positions of the data. qubit_subset (list): The qubit_subset is the set of qubits in the coupling graph that we have chosen to map into, as tuples (Register, index). coupling (CouplingMap): Directed graph representing a coupling map. This coupling map should be one that was provided to the stochastic mapper. trials (int): Number of attempts the randomized algorithm makes. Returns: Tuple: success_flag, best_circuit, best_depth, best_layout If success_flag is True, then best_circuit contains a DAGCircuit with the swap circuit, best_depth contains the depth of the swap circuit, and best_layout contains the new positions of the data qubits after the swap circuit has been applied. Raises: TranspilerError: if anything went wrong. """ logger.debug("layer_permutation: layer_partition = %s", layer_partition) logger.debug("layer_permutation: layout = %s", layout.get_virtual_bits()) logger.debug("layer_permutation: qubit_subset = %s", qubit_subset) logger.debug("layer_permutation: trials = %s", trials) # The input dag is on a flat canonical register # TODO: cleanup the code that is general for multiple qregs below canonical_register = QuantumRegister(len(layout), 'q') qregs = OrderedDict({canonical_register.name: canonical_register}) gates = [] # list of lists of tuples [[(register, index), ...], ...] for gate_args in layer_partition: if len(gate_args) > 2: raise TranspilerError("Layer contains > 2-qubit gates") if len(gate_args) == 2: gates.append(tuple(gate_args)) logger.debug("layer_permutation: gates = %s", gates) # Can we already apply the gates? If so, there is no work to do. dist = sum([coupling.distance(layout[g[0]], layout[g[1]]) for g in gates]) logger.debug("layer_permutation: distance = %s", dist) if dist == len(gates): logger.debug("layer_permutation: nothing to do") circ = DAGCircuit() circ.add_qreg(canonical_register) return True, circ, 0, layout # Begin loop over trials of randomized algorithm num_qubits = len(layout) best_depth = inf # initialize best depth best_edges = None # best edges found best_circuit = None # initialize best swap circuit best_layout = None # initialize best final layout cdist2 = coupling._dist_matrix**2 # Scaling matrix scale = np.zeros((num_qubits, num_qubits)) int_qubit_subset = _regtuple_to_numeric(qubit_subset, qregs) int_gates = _gates_to_idx(gates, qregs) int_layout = nlayout_from_layout(layout, qregs, coupling.size()) trial_circuit = DAGCircuit() # SWAP circuit for slice of swaps in this trial for qubit in layout.get_virtual_bits().keys(): if qubit.register not in trial_circuit.qregs.values(): trial_circuit.add_qreg(qubit.register) edges = np.asarray(coupling.get_edges(), dtype=np.int32).ravel() cdist = coupling._dist_matrix for trial in range(trials): logger.debug("layer_permutation: trial %s", trial) # This is one Trial -------------------------------------- dist, optim_edges, trial_layout, depth_step = swap_trial(num_qubits, int_layout, int_qubit_subset, int_gates, cdist2, cdist, edges, scale, self.rng) logger.debug("layer_permutation: final distance for this trial = %s", dist) if dist == len(gates) and depth_step < best_depth: logger.debug("layer_permutation: got circuit with improved depth %s", depth_step) best_edges = optim_edges best_layout = trial_layout best_depth = min(best_depth, depth_step) # Break out of trial loop if we found a depth 1 circuit # since we can't improve it further if best_depth == 1: break # If we have no best circuit for this layer, all of the # trials have failed if best_layout is None: logger.debug("layer_permutation: failed!") return False, None, None, None edges = best_edges.edges() for idx in range(best_edges.size//2): swap_src = self.trivial_layout[edges[2*idx]] swap_tgt = self.trivial_layout[edges[2*idx+1]] trial_circuit.apply_operation_back(SwapGate(), [swap_src, swap_tgt], []) best_circuit = trial_circuit # Otherwise, we return our result for this layer logger.debug("layer_permutation: success!") best_lay = best_layout.to_layout(qregs) return True, best_circuit, best_depth, best_lay def _layer_update(self, i, best_layout, best_depth, best_circuit, layer_list): """Provide a DAGCircuit for a new mapped layer. Args: i (int): layer number best_layout (Layout): layout returned from _layer_permutation best_depth (int): depth returned from _layer_permutation best_circuit (DAGCircuit): swap circuit returned from _layer_permutation layer_list (list): list of DAGCircuit objects for each layer, output of DAGCircuit layers() method Returns: DAGCircuit: a DAGCircuit object to append to the output DAGCircuit that the _mapper method is building. """ layout = best_layout logger.debug("layer_update: layout = %s", layout) logger.debug("layer_update: self.trivial_layout = %s", self.trivial_layout) dagcircuit_output = DAGCircuit() for qubit in layout.get_virtual_bits().keys(): if qubit.register not in dagcircuit_output.qregs.values(): dagcircuit_output.add_qreg(qubit.register) # Output any swaps if best_depth > 0: logger.debug("layer_update: there are swaps in this layer, " "depth %d", best_depth) dagcircuit_output.compose(best_circuit) else: logger.debug("layer_update: there are no swaps in this layer") # Output this layer layer_circuit = layer_list[i]["graph"] for creg in layer_circuit.cregs.values(): dagcircuit_output.add_creg(creg) order = layout.reorder_bits(dagcircuit_output.qubits) dagcircuit_output.compose(layer_circuit, qubits=order) return dagcircuit_output def _mapper(self, circuit_graph, coupling_graph, trials=20): """Map a DAGCircuit onto a CouplingMap using swap gates. Use self.trivial_layout for the initial layout. Args: circuit_graph (DAGCircuit): input DAG circuit coupling_graph (CouplingMap): coupling graph to map onto trials (int): number of trials. Returns: DAGCircuit: object containing a circuit equivalent to circuit_graph that respects couplings in coupling_graph Raises: TranspilerError: if there was any error during the mapping or with the parameters. """ # Schedule the input circuit by calling layers() layerlist = list(circuit_graph.layers()) logger.debug("schedule:") for i, v in enumerate(layerlist): logger.debug(" %d: %s", i, v["partition"]) qubit_subset = self.trivial_layout.get_virtual_bits().keys() # Find swap circuit to precede each layer of input circuit layout = self.trivial_layout.copy() # Construct an empty DAGCircuit with the same set of # qregs and cregs as the input circuit dagcircuit_output = circuit_graph._copy_circuit_metadata() logger.debug("trivial_layout = %s", layout) # Iterate over layers for i, layer in enumerate(layerlist): # Attempt to find a permutation for this layer success_flag, best_circuit, best_depth, best_layout \ = self._layer_permutation(layer["partition"], layout, qubit_subset, coupling_graph, trials) logger.debug("mapper: layer %d", i) logger.debug("mapper: success_flag=%s,best_depth=%s", success_flag, str(best_depth)) # If this fails, try one gate at a time in this layer if not success_flag: logger.debug("mapper: failed, layer %d, " "retrying sequentially", i) serial_layerlist = list(layer["graph"].serial_layers()) # Go through each gate in the layer for j, serial_layer in enumerate(serial_layerlist): success_flag, best_circuit, best_depth, best_layout = \ self._layer_permutation( serial_layer["partition"], layout, qubit_subset, coupling_graph, trials) logger.debug("mapper: layer %d, sublayer %d", i, j) logger.debug("mapper: success_flag=%s,best_depth=%s,", success_flag, str(best_depth)) # Give up if we fail again if not success_flag: raise TranspilerError("swap mapper failed: " + "layer %d, sublayer %d" % (i, j)) # Update the record of qubit positions # for each inner iteration layout = best_layout # Update the DAG dagcircuit_output.compose( self._layer_update(j, best_layout, best_depth, best_circuit, serial_layerlist)) else: # Update the record of qubit positions for each iteration layout = best_layout # Update the DAG dagcircuit_output.compose( self._layer_update(i, best_layout, best_depth, best_circuit, layerlist)) # This is the final edgemap. We might use it to correctly replace # any measurements that needed to be removed earlier. logger.debug("mapper: self.trivial_layout = %s", self.trivial_layout) logger.debug("mapper: layout = %s", layout) return dagcircuit_output
def _regtuple_to_numeric(items, qregs): """Takes Qubit instances and converts them into an integer array. Args: items (list): List of Qubit instances to convert. qregs (dict): List of Qubit instances. Returns: ndarray: Array of integers. """ sizes = [qr.size for qr in qregs.values()] reg_idx = np.cumsum([0]+sizes) regint = {} for ind, qreg in enumerate(qregs.values()): regint[qreg] = ind out = np.zeros(len(items), dtype=np.int32) for idx, val in enumerate(items): out[idx] = reg_idx[regint[val.register]]+val.index return out def _gates_to_idx(gates, qregs): """Converts gate tuples into a nested list of integers. Args: gates (list): List of Qubit instances representing gates. qregs (dict): List of Qubit instances. Returns: list: Nested list of integers for gates. """ sizes = [qr.size for qr in qregs.values()] reg_idx = np.cumsum([0]+sizes) regint = {} for ind, qreg in enumerate(qregs.values()): regint[qreg] = ind out = np.zeros(2*len(gates), dtype=np.int32) for idx, gate in enumerate(gates): out[2*idx] = reg_idx[regint[gate[0].register]]+gate[0].index out[2*idx+1] = reg_idx[regint[gate[1].register]]+gate[1].index return out

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.