English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.optimization.converters.linear_equality_to_penalty

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Converter to convert a problem with equality constraints to unconstrained with penalty terms."""

import copy
import logging
from math import fsum
from typing import Optional, cast, Union, Tuple, Dict

import qiskit.optimization.algorithms  # pylint: disable=unused-import
from ..exceptions import QiskitOptimizationError
from ..problems.constraint import Constraint
from ..problems.quadratic_objective import QuadraticObjective
from ..problems.quadratic_program import QuadraticProgram, QuadraticProgramStatus
from ..problems.variable import Variable
from .quadratic_program_converter import QuadraticProgramConverter

logger = logging.getLogger(__name__)


[docs]class LinearEqualityToPenalty(QuadraticProgramConverter): """Convert a problem with only equality constraints to unconstrained with penalty terms."""
[docs] def __init__(self, penalty: Optional[float] = None) -> None: """ Args: penalty: Penalty factor to scale equality constraints that are added to objective. If None is passed, penalty factor will be automatically calculated. """ self._src = None # type: Optional[QuadraticProgram] self._dst = None # type: Optional[QuadraticProgram] self._penalty = penalty # type: Optional[float]
[docs] def convert(self, problem: QuadraticProgram) -> QuadraticProgram: """Convert a problem with equality constraints into an unconstrained problem. Args: problem: The problem to be solved, that does not contain inequality constraints. Returns: The converted problem, that is an unconstrained problem. Raises: QiskitOptimizationError: If an inequality constraint exists. """ # create empty QuadraticProgram model self._src = copy.deepcopy(problem) self._dst = QuadraticProgram(name=problem.name) # If penalty is None, set the penalty coefficient by _auto_define_penalty() if self._penalty is None: penalty = self._auto_define_penalty() else: penalty = self._penalty # Set variables for x in self._src.variables: if x.vartype == Variable.Type.CONTINUOUS: self._dst.continuous_var(x.lowerbound, x.upperbound, x.name) elif x.vartype == Variable.Type.BINARY: self._dst.binary_var(x.name) elif x.vartype == Variable.Type.INTEGER: self._dst.integer_var(x.lowerbound, x.upperbound, x.name) else: raise QiskitOptimizationError('Unsupported vartype: {}'.format(x.vartype)) # get original objective terms offset = self._src.objective.constant linear = self._src.objective.linear.to_dict() quadratic = self._src.objective.quadratic.to_dict() sense = self._src.objective.sense.value # convert linear constraints into penalty terms for constraint in self._src.linear_constraints: if constraint.sense != Constraint.Sense.EQ: raise QiskitOptimizationError( 'An inequality constraint exists. ' 'The method supports only equality constraints.' ) constant = constraint.rhs row = constraint.linear.to_dict() # constant parts of penalty*(Constant-func)**2: penalty*(Constant**2) offset += sense * penalty * constant ** 2 # linear parts of penalty*(Constant-func)**2: penalty*(-2*Constant*func) for j, coef in row.items(): # if j already exists in the linear terms dic, add a penalty term # into existing value else create new key and value in the linear_term dict linear[j] = linear.get(j, 0.0) + sense * penalty * -2 * coef * constant # quadratic parts of penalty*(Constant-func)**2: penalty*(func**2) for j, coef_1 in row.items(): for k, coef_2 in row.items(): # if j and k already exist in the quadratic terms dict, # add a penalty term into existing value # else create new key and value in the quadratic term dict # according to implementation of quadratic terms in OptimizationModel, # don't need to multiply by 2, since loops run over (x, y) and (y, x). tup = cast(Union[Tuple[int, int], Tuple[str, str]], (j, k)) quadratic[tup] = quadratic.get(tup, 0.0) + sense * penalty * coef_1 * coef_2 if self._src.objective.sense == QuadraticObjective.Sense.MINIMIZE: self._dst.minimize(offset, linear, quadratic) else: self._dst.maximize(offset, linear, quadratic) return self._dst
def _auto_define_penalty(self) -> float: """Automatically define the penalty coefficient. Returns: Return the minimum valid penalty factor calculated from the upper bound and the lower bound of the objective function. If a constraint has a float coefficient, return the default value for the penalty factor. """ default_penalty = 1e5 # Check coefficients of constraints. # If a constraint has a float coefficient, return the default value for the penalty factor. terms = [] for constraint in self._src.linear_constraints: terms.append(constraint.rhs) terms.extend(coef for coef in constraint.linear.to_dict().values()) if any(isinstance(term, float) and not term.is_integer() for term in terms): logger.warning( 'Warning: Using %f for the penalty coefficient because ' 'a float coefficient exists in constraints. \n' 'The value could be too small. ' 'If so, set the penalty coefficient manually.', default_penalty, ) return default_penalty # (upper bound - lower bound) can be calculate as the sum of absolute value of coefficients # Firstly, add 1 to guarantee that infeasible answers will be greater than upper bound. penalties = [1.0] # add linear terms of the object function. penalties.extend(abs(coef) for coef in self._src.objective.linear.to_dict().values()) # add quadratic terms of the object function. penalties.extend(abs(coef) for coef in self._src.objective.quadratic.to_dict().values()) return fsum(penalties)
[docs] def interpret(self, result: 'qiskit.optimization.algorithms.OptimizationResult') \ -> 'qiskit.optimization.algorithms.OptimizationResult': # type: ignore """Convert the result of the converted problem back to that of the original problem Args: result: The result of the converted problem or the given result in case of FAILURE. Returns: The result of the original problem. Raises: QiskitOptimizationError: if the number of variables in the result differs from that of the original problem. """ # pylint: disable=cyclic-import from ..algorithms.optimization_algorithm import OptimizationResult, OptimizationResultStatus if result.x is None: return result if len(result.x) != self._src.get_num_vars(): raise QiskitOptimizationError( 'The number of variables in the passed result differs from ' 'that of the original problem.' ) # Substitute variables to obtain the function value and feasibility in the original problem substitute_dict = {} # type: Dict[Union[str, int], float] variables = self._src.variables for i in range(len(result.x)): substitute_dict[variables[i].name] = float(result.x[i]) substituted_qp = self._src.substitute_variables(substitute_dict) # Set the new status of optimization result if substituted_qp.status == QuadraticProgramStatus.VALID: new_status = OptimizationResultStatus.SUCCESS else: new_status = OptimizationResultStatus.INFEASIBLE return OptimizationResult(x=result.x, fval=substituted_qp.objective.constant, variables=self._src.variables, status=new_status, raw_results=result.raw_results)
@property def penalty(self) -> Optional[float]: """Returns the penalty factor used in conversion. Returns: The penalty factor used in conversion. """ return self._penalty @penalty.setter def penalty(self, penalty: Optional[float]) -> None: """Set a new penalty factor. Args: penalty: The new penalty factor. If None is passed, penalty factor will be automatically calculated. """ self._penalty = penalty

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.