English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.ignis.mitigation.expval.tensored_mitigator

# -*- coding: utf-8 -*-

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Single-qubit tensor-product measurement error mitigation generator.
"""
from typing import Optional, List, Dict, Tuple
import numpy as np

from .utils import (counts_probability_vector, _expval_with_stddev)
from .base_meas_mitigator import BaseExpvalMeasMitigator


[docs]class TensoredExpvalMeasMitigator(BaseExpvalMeasMitigator): """1-qubit tensor product measurement error mitigator. This class can be used with the :func:`qiskit.ignis.mitigation.expectation_value` function to apply measurement error mitigation of local single-qubit measurement errors. Expectation values can also be computed directly using the :meth:`expectation_value` method. For measurement mitigation to be applied the mitigator should be calibrated using the :func:`qiskit.ignis.mitigation.expval_meas_mitigator_circuits` function and :class:`qiskit.ignis.mitigation.ExpvalMeasMitigatorFitter` class with the ``'tensored'`` mitigation method. """
[docs] def __init__(self, amats: List[np.ndarray]): """Initialize a TensorMeasurementMitigator Args: amats: list of single-qubit readout error assignment matrices. """ self._num_qubits = len(amats) self._assignment_mats = amats self._mitigation_mats = np.zeros([self._num_qubits, 2, 2], dtype=float) self._gammas = np.zeros(self._num_qubits, dtype=float) for i in range(self._num_qubits): mat = self._assignment_mats[i] # Compute Gamma values error0 = mat[1, 0] error1 = mat[0, 1] self._gammas[i] = (1 + abs(error0 - error1)) / (1 - error0 - error1) # Compute inverse mitigation matrix try: ainv = np.linalg.inv(mat) except np.linalg.LinAlgError: ainv = np.linalg.pinv(mat) self._mitigation_mats[i] = ainv
[docs] def expectation_value(self, counts: Dict, diagonal: Optional[np.ndarray] = None, qubits: Optional[List[int]] = None, clbits: Optional[List[int]] = None, ) -> Tuple[float, float]: r"""Compute the mitigated expectation value of a diagonal observable. This computes the mitigated estimator of :math:`\langle O \rangle = \mbox{Tr}[\rho. O]` of a diagonal observable :math:`O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|`. Args: counts: counts object diagonal: Optional, the vector of diagonal values for summing the expectation value. If ``None`` the the default value is :math:`[1, -1]^\otimes n`. qubits: Optional, the measured physical qubits the count bitstrings correspond to. If None qubits are assumed to be :math:`[0, ..., n-1]`. clbits: Optional, if not None marginalize counts to the specified bits. Returns: (float, float): the expectation value and standard deviation. Additional Information: The diagonal observable :math:`O` is input using the ``diagonal`` kwarg as a list or Numpy array :math:`[O(0), ..., O(2^n -1)]`. If no diagonal is specified the diagonal of the Pauli operator :math`O = \mbox{diag}(Z^{\otimes n}) = [1, -1]^{\otimes n}` is used. The ``clbits`` kwarg is used to marginalize the input counts dictionary over the specified bit-values, and the ``qubits`` kwarg is used to specify which physical qubits these bit-values correspond to as ``circuit.measure(qubits, clbits)``. """ # Get expectation value on specified qubits probs, shots = counts_probability_vector( counts, clbits=clbits, return_shots=True) num_qubits = int(np.log2(probs.shape[0])) if qubits is not None: ainvs = self._mitigation_mats[list(qubits)] else: ainvs = self._mitigation_mats # Get operator coeffs if diagonal is None: diagonal = self._z_diagonal(2 ** num_qubits) # Apply transpose of mitigation matrix coeffs = np.reshape(diagonal, num_qubits * [2]) einsum_args = [coeffs, list(range(num_qubits))] for i, ainv in enumerate(reversed(ainvs)): einsum_args += [ainv.T, [num_qubits + i, i]] einsum_args += [list(range(num_qubits, 2 * num_qubits))] coeffs = np.einsum(*einsum_args).ravel() return _expval_with_stddev(coeffs, probs, shots)
[docs] def mitigation_matrix(self, qubits: List[int] = None) -> np.ndarray: r"""Return the measurement mitigation matrix for the specified qubits. The mitigation matrix :math:`A^{-1}` is defined as the inverse of the :meth:`assignment_matrix` :math:`A`. Args: qubits: Optional, qubits being measured for operator expval. Returns: np.ndarray: the measurement error mitigation matrix :math:`A^{-1}`. """ if qubits is None: qubits = list(range(self._num_qubits)) if isinstance(qubits, int): qubits = [qubits] mat = self._mitigation_mats[qubits[0]] for i in qubits[1:]: mat = np.kron(self._mitigation_mats[qubits[i]], mat) return mat
[docs] def assignment_matrix(self, qubits: List[int] = None) -> np.ndarray: r"""Return the measurement assignment matrix for specified qubits. The assignment matrix is the stochastic matrix :math:`A` which assigns a noisy measurement probability distribution to an ideal input measurement distribution: :math:`P(i|j) = \langle i | A | j \rangle`. Args: qubits: Optional, qubits being measured for operator expval. Returns: np.ndarray: the assignment matrix A. """ if qubits is None: qubits = list(range(self._num_qubits)) if isinstance(qubits, int): qubits = [qubits] mat = self._assignment_mats[qubits[0]] for i in qubits[1:]: mat = np.kron(self._assignment_mats[qubits[i]], mat) return mat
[docs] def assignment_fidelity(self, qubits: Optional[List[int]] = None) -> float: r"""Return the measurement assignment fidelity on the specified qubits. The assignment fidelity on N-qubits is defined as :math:`\sum_{x\in\{0, 1\}^n} P(x|x) / 2^n`, where :math:`P(x|x) = \rangle x|A|x\langle`, and :math:`A` is the :meth:`assignment_matrix`. Args: qubits: Optional, qubits being measured for operator expval. Returns: float: the assignment fidelity. """ if qubits is None: qubits = list(range(self._num_qubits)) if isinstance(qubits, int): qubits = [qubits] fid = 1.0 for i in qubits: fid *= np.mean(self._assignment_mats[i].diagonal()) return fid
def _compute_gamma(self, qubits=None): """Compute gamma for N-qubit mitigation""" if qubits is None: gammas = self._gammas else: gammas = self._gammas[list(qubits)] return np.product(gammas)

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.