English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.circuit.library.standard_gates.sx

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Sqrt(X) and C-Sqrt(X) gates."""

import numpy
from qiskit.qasm import pi
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister


[docs]class SXGate(Gate): r"""The single-qubit Sqrt(X) gate (:math:`\sqrt{X}`). **Matrix Representation:** .. math:: \sqrt{X} = \frac{1}{2} \begin{pmatrix} 1 + i & 1 - i \\ 1 - i & 1 + i \end{pmatrix} **Circuit symbol:** .. parsed-literal:: ┌────┐ q_0: ┤ √X ├ └────┘ .. note:: A global phase difference exists between the definitions of :math:`RX(\pi/2)` and :math:`\sqrt{X}`. .. math:: RX(\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} = e^{-i pi/4} \sqrt{X} """
[docs] def __init__(self, label=None): """Create new SX gate.""" super().__init__('sx', 1, [], label=label)
def _define(self): """ gate sx a { rz(-pi/2) a; h a; rz(-pi/2); } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .s import SdgGate from .h import HGate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name, global_phase=pi / 4) rules = [ (SdgGate(), [q[0]], []), (HGate(), [q[0]], []), (SdgGate(), [q[0]], []) ] qc.data = rules self.definition = qc
[docs] def inverse(self): """Return inverse SX gate (i.e. SXdg).""" return SXdgGate()
[docs] def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a (multi-)controlled-SX gate. One control returns a CSX gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CSXGate(label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
[docs] def to_matrix(self): """Return a numpy.array for the SX gate.""" return numpy.array([[1 + 1j, 1 - 1j], [1 - 1j, 1 + 1j]], dtype=complex) / 2
[docs]class SXdgGate(Gate): r"""The inverse single-qubit Sqrt(X) gate. .. math:: \sqrt{X}^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 - i & 1 + i \\ 1 + i & 1 - i \end{pmatrix} .. note:: A global phase difference exists between the definitions of :math:`RX(-\pi/2)` and :math:`\sqrt{X}^{\dagger}`. .. math:: RX(-\pi/2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} = e^{-i pi/4} \sqrt{X}^{\dagger} """
[docs] def __init__(self, label=None): """Create new SXdg gate.""" super().__init__('sxdg', 1, [], label=label)
def _define(self): """ gate sxdg a { rz(pi/2) a; h a; rz(pi/2); } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .s import SGate from .h import HGate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name, global_phase=-pi / 4) rules = [ (SGate(), [q[0]], []), (HGate(), [q[0]], []), (SGate(), [q[0]], []) ] qc.data = rules self.definition = qc
[docs] def inverse(self): """Return inverse SXdg gate (i.e. SX).""" return SXGate()
[docs] def to_matrix(self): """Return a numpy.array for the SXdg gate.""" return numpy.array([[1 - 1j, 1 + 1j], [1 + 1j, 1 - 1j]], dtype=complex) / 2
[docs]class CSXGate(ControlledGate): r"""Controlled-√X gate. **Circuit symbol:** .. parsed-literal:: q_0: ──■── ┌─┴──┐ q_1: ┤ √X ├ └────┘ **Matrix representation:** .. math:: C\sqrt{X} \ q_0, q_1 = I \otimes |0 \rangle\langle 0| + \sqrt{X} \otimes |1 \rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & (1 + i) / 2 & 0 & (1 - i) / 2 \\ 0 & 0 & 1 & 0 \\ 0 & (1 - i) / 2 & 0 & (1 + i) / 2 \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be `q_1`. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌────┐ q_0: ┤ √X ├ └─┬──┘ q_1: ──■── .. math:: C\sqrt{X}\ q_1, q_0 = |0 \rangle\langle 0| \otimes I + |1 \rangle\langle 1| \otimes \sqrt{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (1 + i) / 2 & (1 - i) / 2 \\ 0 & 0 & (1 - i) / 2 & (1 + i) / 2 \end{pmatrix} """ # Define class constants. This saves future allocation time. _matrix1 = numpy.array([[1, 0, 0, 0], [0, (1 + 1j) / 2, 0, (1 - 1j) / 2], [0, 0, 1, 0], [0, (1 - 1j) / 2, 0, (1 + 1j) / 2]], dtype=complex) _matrix0 = numpy.array([[(1 + 1j) / 2, 0, (1 - 1j) / 2, 0], [0, 1, 0, 0], [(1 - 1j) / 2, 0, (1 + 1j) / 2, 0], [0, 0, 0, 1]], dtype=complex)
[docs] def __init__(self, label=None, ctrl_state=None): """Create new CSX gate.""" super().__init__('csx', 2, [], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state, base_gate=SXGate())
def _define(self): """ gate csx a,b { h b; cu1(pi/2) a,b; h b; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .h import HGate from .u1 import CU1Gate q = QuantumRegister(2, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (HGate(), [q[1]], []), (CU1Gate(pi/2), [q[0], q[1]], []), (HGate(), [q[1]], []) ] qc.data = rules self.definition = qc
[docs] def to_matrix(self): """Return a numpy.array for the CSX gate.""" if self.ctrl_state: return self._matrix1 else: return self._matrix0

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.