English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.chemistry.transformations.fermionic_transformation

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""This module implements a transformation from a fermionic problem to a qubit operator.

The problem is described in a driver.
"""

from functools import partial
from typing import Optional, List, Union, cast, Tuple, Dict, Any, Callable
import logging
from enum import Enum

import numpy as np

from qiskit.tools import parallel_map
from qiskit.aqua import AquaError, aqua_globals
from qiskit.aqua.operators import Z2Symmetries, WeightedPauliOperator, OperatorBase
from qiskit.aqua.algorithms import EigensolverResult, MinimumEigensolverResult
from qiskit.chemistry import QiskitChemistryError, QMolecule
from qiskit.chemistry.fermionic_operator import FermionicOperator
from qiskit.chemistry.drivers import BaseDriver
from qiskit.chemistry.results import DipoleTuple, EigenstateResult, ElectronicStructureResult
from qiskit.chemistry.components.variational_forms import UCCSD

from .transformation import Transformation
from ..components.initial_states import HartreeFock

logger = logging.getLogger(__name__)


[docs]class FermionicTransformationType(Enum): """ Electronic Transformation Type enum """ FULL = 'full' PARTICLE_HOLE = 'particle_hole'
[docs]class FermionicQubitMappingType(Enum): """ FermionicQubitMappingType enum """ JORDAN_WIGNER = 'jordan_wigner' PARITY = 'parity' BRAVYI_KITAEV = 'bravyi_kitaev'
[docs]class FermionicTransformation(Transformation): """A transformation from a fermionic problem, represented by a driver, to a qubit operator."""
[docs] def __init__(self, transformation: FermionicTransformationType = FermionicTransformationType.FULL, qubit_mapping: FermionicQubitMappingType = FermionicQubitMappingType.PARITY, two_qubit_reduction: bool = True, freeze_core: bool = False, orbital_reduction: Optional[List[int]] = None, z2symmetry_reduction: Optional[Union[str, List[int]]] = None) -> None: """ Args: transformation: full or particle_hole qubit_mapping: 'jordan_wigner', 'parity' or 'bravyi_kitaev' two_qubit_reduction: Whether two qubit reduction should be used, when parity mapping only freeze_core: Whether to freeze core orbitals when possible orbital_reduction: Orbital list to be frozen or removed z2symmetry_reduction: If z2 symmetry reduction should be applied to resulting qubit operators that are computed. For each symmetry detected the operator will be split in two where each requires one qubit less for computation. So for example 3 symmetries will split in the original operator into 8 new operators each requiring 3 less qubits. Now only one of these operators will have the ground state and be the correct symmetry sector needed for the ground state. Setting 'auto' will use an automatic computation of the correct sector. If from other experiments, with the z2symmetry logic, the sector is known, then the tapering values of that sector can be provided (a list of int of values -1, and 1). The default is None meaning no symmetry reduction is done. Note that dipole and other operators such as spin, num particles etc are also symmetry reduced according to the symmetries found in the main operator if this operator commutes with the main operator symmetry. If it does not then the operator will be discarded since no meaningful measurement can take place. Raises: QiskitChemistryError: Invalid symmetry reduction """ transformation = transformation.value # type: ignore orbital_reduction = orbital_reduction if orbital_reduction is not None else [] super().__init__() self._transformation = transformation self._qubit_mapping = qubit_mapping.value self._two_qubit_reduction = two_qubit_reduction self._freeze_core = freeze_core self._orbital_reduction = orbital_reduction if z2symmetry_reduction is not None: if isinstance(z2symmetry_reduction, str): if z2symmetry_reduction != 'auto': raise QiskitChemistryError('Invalid z2symmetry_reduction value') self._z2symmetry_reduction = z2symmetry_reduction self._has_dipole_moments = False self._untapered_qubit_op = None # Store values that are computed by the classical logic in order # that later they may be combined with the quantum result self._hf_energy = None self._nuclear_repulsion_energy = None self._nuclear_dipole_moment = None self._reverse_dipole_sign = None # The following shifts are from freezing orbitals under orbital reduction self._energy_shift = 0.0 self._x_dipole_shift = 0.0 self._y_dipole_shift = 0.0 self._z_dipole_shift = 0.0 # The following shifts are from particle_hole transformation self._ph_energy_shift = 0.0 self._ph_x_dipole_shift = 0.0 self._ph_y_dipole_shift = 0.0 self._ph_z_dipole_shift = 0.0 self._molecule_info: Dict[str, Any] = {}
@property def commutation_rule(self) -> bool: """Getter of the commutation rule""" return False @property def molecule_info(self) -> Dict[str, Any]: """Getter of the molecule information.""" return self._molecule_info @property def qubit_mapping(self) -> str: """Getter of the qubit mapping.""" return self._qubit_mapping
[docs] def transform(self, driver: BaseDriver, aux_operators: Optional[List[FermionicOperator]] = None ) -> Tuple[OperatorBase, List[OperatorBase]]: """Transformation from the ``driver`` to a qubit operator. Args: driver: A driver encoding the molecule information. aux_operators: Additional auxiliary ``FermionicOperator`` instances to evaluate. Returns: A qubit operator and a dictionary of auxiliary operators. """ q_molecule = driver.run() ops, aux_ops = self._do_transform(q_molecule, aux_operators) # the internal method may still return legacy operators which is why we make sure to convert # all of the operator to the operator flow ops = ops.to_opflow() if isinstance(ops, WeightedPauliOperator) else ops aux_ops = [a.to_opflow() if isinstance(a, WeightedPauliOperator) else a for a in aux_ops] return ops, aux_ops
def _do_transform(self, qmolecule: QMolecule, aux_operators: Optional[List[FermionicOperator]] = None ) -> Tuple[WeightedPauliOperator, List[WeightedPauliOperator]]: """ Args: qmolecule: qmolecule aux_operators: Additional ``FermionicOperator``s to map to a qubit operator. Returns: (qubit operator, auxiliary operators) """ logger.debug('Processing started...') # Save these values for later combination with the quantum computation result self._hf_energy = qmolecule.hf_energy self._nuclear_repulsion_energy = qmolecule.nuclear_repulsion_energy self._nuclear_dipole_moment = qmolecule.nuclear_dipole_moment self._reverse_dipole_sign = qmolecule.reverse_dipole_sign core_list = qmolecule.core_orbitals if self._freeze_core else [] reduce_list = self._orbital_reduction if self._freeze_core: logger.info("Freeze_core specified. Core orbitals to be frozen: %s", core_list) if reduce_list: logger.info("Configured orbital reduction list: %s", reduce_list) reduce_list = [x + qmolecule.num_orbitals if x < 0 else x for x in reduce_list] freeze_list = [] remove_list = [] # Orbitals are specified by their index from 0 to n-1, where n is the number of orbitals the # molecule has. The combined list of the core orbitals, when freeze_core is true, with any # user supplied orbitals is what will be used. Negative numbers may be used to indicate the # upper virtual orbitals, so -1 is the highest, then -2 etc. and these will # be converted to the # positive 0-based index for computation. # In the combined list any orbitals that are occupied are added to a freeze list and an # energy is stored from these orbitals to be added later. # Unoccupied orbitals are just discarded. # Because freeze and eliminate is done in separate steps, # with freeze first, we have to re-base # the indexes for elimination according to how many orbitals were removed when freezing. # orbitals_list = list(set(core_list + reduce_list)) num_alpha = qmolecule.num_alpha num_beta = qmolecule.num_beta new_num_alpha = num_alpha new_num_beta = num_beta if orbitals_list: orbitals_list = np.array(orbitals_list) orbitals_list = orbitals_list[(cast(np.ndarray, orbitals_list) >= 0) & (orbitals_list < qmolecule.num_orbitals)] freeze_list_alpha = [i for i in orbitals_list if i < num_alpha] freeze_list_beta = [i for i in orbitals_list if i < num_beta] freeze_list = np.append(freeze_list_alpha, [i + qmolecule.num_orbitals for i in freeze_list_beta]) remove_list_alpha = [i for i in orbitals_list if i >= num_alpha] remove_list_beta = [i for i in orbitals_list if i >= num_beta] rla_adjust = -len(freeze_list_alpha) rlb_adjust = -len(freeze_list_alpha) - len(freeze_list_beta) + qmolecule.num_orbitals remove_list = np.append([i + rla_adjust for i in remove_list_alpha], [i + rlb_adjust for i in remove_list_beta]) logger.info("Combined orbital reduction list: %s", orbitals_list) logger.info(" converting to spin orbital reduction list: %s", np.append(np.array(orbitals_list), np.array(orbitals_list) + qmolecule.num_orbitals)) logger.info(" => freezing spin orbitals: %s", freeze_list) logger.info(" => removing spin orbitals: %s (indexes accounting for freeze %s)", np.append(remove_list_alpha, np.array(remove_list_beta) + qmolecule.num_orbitals), remove_list) new_num_alpha -= len(freeze_list_alpha) new_num_beta -= len(freeze_list_beta) new_nel = [new_num_alpha, new_num_beta] # construct the fermionic operator fer_op = FermionicOperator(h1=qmolecule.one_body_integrals, h2=qmolecule.two_body_integrals) # try to reduce it according to the freeze and remove list fer_op, self._energy_shift, did_shift = \ FermionicTransformation._try_reduce_fermionic_operator(fer_op, freeze_list, remove_list) # apply same transformation for the aux operators if aux_operators is not None: aux_operators = [ FermionicTransformation._try_reduce_fermionic_operator( op, freeze_list, remove_list)[0] for op in aux_operators ] if did_shift: logger.info("Frozen orbital energy shift: %s", self._energy_shift) # apply particle hole transformation, if specified if self._transformation == FermionicTransformationType.PARTICLE_HOLE.value: fer_op, ph_shift = fer_op.particle_hole_transformation(new_nel) self._ph_energy_shift = -ph_shift logger.info("Particle hole energy shift: %s", self._ph_energy_shift) # apply the same transformation for the aux operators if aux_operators is not None: aux_operators = [ op.particle_hole_transformation(new_nel)[0] for op in aux_operators ] logger.debug('Converting to qubit using %s mapping', self._qubit_mapping) qubit_op = FermionicTransformation._map_fermionic_operator_to_qubit( fer_op, self._qubit_mapping, new_nel, self._two_qubit_reduction ) qubit_op.name = 'Fermionic Operator' logger.debug(' num paulis: %s, num qubits: %s', len(qubit_op.paulis), qubit_op.num_qubits) aux_ops = [] # list of the aux operators def _add_aux_op(aux_op: FermionicOperator, name: str) -> None: """ Add auxiliary operators Args: aux_op: auxiliary operators name: name """ aux_qop = FermionicTransformation._map_fermionic_operator_to_qubit( aux_op, self._qubit_mapping, new_nel, self._two_qubit_reduction ) aux_qop.name = name aux_ops.append(aux_qop) logger.debug(' num paulis: %s', aux_qop.paulis) # the first three operators are hardcoded to number of particles, angular momentum # and magnetization in this order logger.debug('Creating aux op for Number of Particles') _add_aux_op(fer_op.total_particle_number(), 'Number of Particles') logger.debug('Creating aux op for S^2') _add_aux_op(fer_op.total_angular_momentum(), 'S^2') logger.debug('Creating aux op for Magnetization') _add_aux_op(fer_op.total_magnetization(), 'Magnetization') # the next three are dipole moments, if supported by the qmolecule if qmolecule.has_dipole_integrals(): self._has_dipole_moments = True def _dipole_op(dipole_integrals: np.ndarray, axis: str) \ -> Tuple[WeightedPauliOperator, float, float]: """ Dipole operators Args: dipole_integrals: dipole integrals axis: axis for dipole moment calculation Returns: (qubit_op_, shift, ph_shift_) """ logger.debug('Creating aux op for dipole %s', axis) fer_op_ = FermionicOperator(h1=dipole_integrals) fer_op_, shift, did_shift_ = self._try_reduce_fermionic_operator(fer_op_, freeze_list, remove_list) if did_shift_: logger.info("Frozen orbital %s dipole shift: %s", axis, shift) ph_shift_ = 0.0 if self._transformation == FermionicTransformationType.PARTICLE_HOLE.value: fer_op_, ph_shift_ = fer_op_.particle_hole_transformation(new_nel) ph_shift_ = -ph_shift_ logger.info("Particle hole %s dipole shift: %s", axis, ph_shift_) qubit_op_ = self._map_fermionic_operator_to_qubit(fer_op_, self._qubit_mapping, new_nel, self._two_qubit_reduction) qubit_op_.name = 'Dipole ' + axis logger.debug(' num paulis: %s', len(qubit_op_.paulis)) return qubit_op_, shift, ph_shift_ op_dipole_x, self._x_dipole_shift, self._ph_x_dipole_shift = \ _dipole_op(qmolecule.x_dipole_integrals, 'x') op_dipole_y, self._y_dipole_shift, self._ph_y_dipole_shift = \ _dipole_op(qmolecule.y_dipole_integrals, 'y') op_dipole_z, self._z_dipole_shift, self._ph_z_dipole_shift = \ _dipole_op(qmolecule.z_dipole_integrals, 'z') aux_ops += [op_dipole_x, op_dipole_y, op_dipole_z] # add user specified auxiliary operators if aux_operators is not None: for aux_op in aux_operators: if hasattr(aux_op, 'name'): name = aux_op.name else: name = '' _add_aux_op(aux_op, name) logger.info('Molecule num electrons: %s, remaining for processing: %s', [num_alpha, num_beta], new_nel) nspinorbs = qmolecule.num_orbitals * 2 new_nspinorbs = nspinorbs - len(freeze_list) - len(remove_list) logger.info('Molecule num spin orbitals: %s, remaining for processing: %s', nspinorbs, new_nspinorbs) self._molecule_info['num_particles'] = [new_num_alpha, new_num_beta] self._molecule_info['num_orbitals'] = new_nspinorbs reduction = self._two_qubit_reduction if self._qubit_mapping == 'parity' else False self._molecule_info['two_qubit_reduction'] = reduction self._untapered_qubit_op = qubit_op z2symmetries = Z2Symmetries([], [], [], None) if self._z2symmetry_reduction is not None: logger.debug('Processing z2 symmetries') qubit_op, aux_ops, z2symmetries = self._process_z2symmetry_reduction(qubit_op, aux_ops) self._molecule_info['z2_symmetries'] = z2symmetries logger.debug('Processing complete ready to run algorithm') return qubit_op, aux_ops @property def untapered_qubit_op(self): """Getter for the untapered qubit operator""" return self._untapered_qubit_op def _process_z2symmetry_reduction(self, qubit_op: WeightedPauliOperator, aux_ops: List[WeightedPauliOperator]) -> Tuple: """ Implement z2 symmetries in the qubit operator Args: qubit_op : qubit operator aux_ops: auxiliary operators Returns: (z2_qubit_op, z2_aux_ops, z2_symmetries) Raises: QiskitChemistryError: Invalid input """ z2_symmetries = Z2Symmetries.find_Z2_symmetries(qubit_op) if z2_symmetries.is_empty(): logger.debug('No Z2 symmetries found') z2_qubit_op = qubit_op z2_aux_ops = aux_ops z2_symmetries = Z2Symmetries([], [], [], None) else: logger.debug('%s Z2 symmetries found: %s', len(z2_symmetries.symmetries), ','.join([symm.to_label() for symm in z2_symmetries.symmetries])) # Check auxiliary operators commute with main operator's symmetry logger.debug('Checking operators commute with symmetry:') symmetry_ops = [] for symmetry in z2_symmetries.symmetries: symmetry_ops.append(WeightedPauliOperator(paulis=[[1.0, symmetry]])) commutes = FermionicTransformation._check_commutes(symmetry_ops, qubit_op) if not commutes: raise QiskitChemistryError('Z2 symmetry failure main operator must commute ' 'with symmetries found from it') for i, aux_op in enumerate(aux_ops): commutes = FermionicTransformation._check_commutes(symmetry_ops, aux_op) if not commutes: aux_ops[i] = None # Discard since no meaningful measurement can be done if self._z2symmetry_reduction == 'auto': hf_state = HartreeFock(num_orbitals=self._molecule_info['num_orbitals'], qubit_mapping=self._qubit_mapping, two_qubit_reduction=self._two_qubit_reduction, num_particles=self._molecule_info['num_particles']) z2_symmetries = FermionicTransformation._pick_sector(z2_symmetries, hf_state.bitstr) else: if len(self._z2symmetry_reduction) != len(z2_symmetries.symmetries): raise QiskitChemistryError('z2symmetry_reduction tapering values list has ' 'invalid length {} should be {}'. format(len(self._z2symmetry_reduction), len(z2_symmetries.symmetries))) valid = np.all(np.isin(self._z2symmetry_reduction, [-1, 1])) if not valid: raise QiskitChemistryError('z2symmetry_reduction tapering values list must ' 'contain -1\'s and/or 1\'s only was {}'. format(self._z2symmetry_reduction,)) z2_symmetries.tapering_values = self._z2symmetry_reduction logger.debug('Apply symmetry with tapering values %s', z2_symmetries.tapering_values) chop_to = 0.00000001 # Use same threshold as qubit mapping to chop tapered operator z2_qubit_op = z2_symmetries.taper(qubit_op).chop(chop_to) z2_aux_ops = [] for aux_op in aux_ops: if aux_op is None: z2_aux_ops += [None] else: z2_aux_ops += [z2_symmetries.taper(aux_op).chop(chop_to)] return z2_qubit_op, z2_aux_ops, z2_symmetries @staticmethod def _check_commutes(cliffords: List[WeightedPauliOperator], operator: WeightedPauliOperator) -> bool: """ Check commutations Args: cliffords : cliffords operator: qubit operator Returns: Boolean: does_commute """ commutes = [] for clifford in cliffords: commutes.append(operator.commute_with(clifford)) does_commute = np.all(commutes) logger.debug(' \'%s\' commutes: %s, %s', operator.name, does_commute, commutes) return does_commute
[docs] def get_default_filter_criterion(self) -> Optional[Callable[[Union[List, np.ndarray], float, Optional[List[float]]], bool]]: """Returns a default filter criterion method to filter the eigenvalues computed by the eigen solver. For more information see also aqua.algorithms.eigen_solvers.NumPyEigensolver.filter_criterion. In the fermionic case the default filter ensures that the number of particles is being preserved. """ # pylint: disable=unused-argument def filter_criterion(self, eigenstate, eigenvalue, aux_values): # the first aux_value is the evaluated number of particles num_particles_aux = aux_values[0][0] # the second aux_value is the total angular momentum which (for singlets) should be zero total_angular_momentum_aux = aux_values[1][0] return np.isclose(sum(self.molecule_info['num_particles']), num_particles_aux) and \ np.isclose(0., total_angular_momentum_aux) return partial(filter_criterion, self)
@staticmethod def _pick_sector(z2_symmetries: Z2Symmetries, hf_str: np.ndarray) -> Z2Symmetries: """ Based on Hartree-Fock bit string and found symmetries to determine the sector. The input z2 symmetries will be mutated with the determined tapering values. Args: z2_symmetries: the z2 symmetries object. hf_str: Hartree-Fock bit string (the last index is for qubit 0). Returns: the original z2 symmetries filled with the correct tapering values. """ # Finding all the symmetries using the find_Z2_symmetries: taper_coef = [] for sym in z2_symmetries.symmetries: # pylint: disable=no-member coef = -1 if np.logical_xor.reduce(np.logical_and(sym.z[::-1], hf_str)) else 1 taper_coef.append(coef) z2_symmetries.tapering_values = taper_coef return z2_symmetries
[docs] def interpret(self, raw_result: Union[EigenstateResult, EigensolverResult, MinimumEigensolverResult]) -> ElectronicStructureResult: """Interprets an EigenstateResult in the context of this transformation. Args: raw_result: an eigenstate result object. Returns: An electronic structure result. """ eigenstate_result = None if isinstance(raw_result, EigenstateResult): eigenstate_result = raw_result elif isinstance(raw_result, EigensolverResult): eigenstate_result = EigenstateResult() eigenstate_result.raw_result = raw_result eigenstate_result.eigenenergies = raw_result.eigenvalues eigenstate_result.eigenstates = raw_result.eigenstates eigenstate_result.aux_operator_eigenvalues = raw_result.aux_operator_eigenvalues elif isinstance(raw_result, MinimumEigensolverResult): eigenstate_result = EigenstateResult() eigenstate_result.raw_result = raw_result eigenstate_result.eigenenergies = np.asarray([raw_result.eigenvalue]) eigenstate_result.eigenstates = [raw_result.eigenstate] eigenstate_result.aux_operator_eigenvalues = [raw_result.aux_operator_eigenvalues] result = ElectronicStructureResult(eigenstate_result.data) result.computed_energies = np.asarray([e.real for e in eigenstate_result.eigenenergies]) result.hartree_fock_energy = self._hf_energy result.nuclear_repulsion_energy = self._nuclear_repulsion_energy if self._nuclear_dipole_moment is not None: result.nuclear_dipole_moment = tuple(x for x in self._nuclear_dipole_moment) result.ph_extracted_energy = self._ph_energy_shift result.frozen_extracted_energy = self._energy_shift if result.aux_operator_eigenvalues is not None: # the first three values are hardcoded to number of particles, angular momentum # and magnetization in this order result.num_particles = [] result.total_angular_momentum = [] result.magnetization = [] result.computed_dipole_moment = [] result.ph_extracted_dipole_moment = [] result.frozen_extracted_dipole_moment = [] if not isinstance(result.aux_operator_eigenvalues, list): aux_operator_eigenvalues = [result.aux_operator_eigenvalues] else: aux_operator_eigenvalues = result.aux_operator_eigenvalues for aux_op_eigenvalues in aux_operator_eigenvalues: if aux_op_eigenvalues is None: continue if aux_op_eigenvalues[0] is not None: result.num_particles.append(aux_op_eigenvalues[0][0].real) if aux_op_eigenvalues[1] is not None: result.total_angular_momentum.append(aux_op_eigenvalues[1][0].real) if aux_op_eigenvalues[2] is not None: result.magnetization.append(aux_op_eigenvalues[2][0].real) # the next three are hardcoded to Dipole moments, if they are set if len(aux_op_eigenvalues) >= 6 and self._has_dipole_moments: # check if the names match # extract dipole moment in each axis dipole_moment = [] for moment in aux_op_eigenvalues[3:6]: if moment is not None: dipole_moment += [moment[0].real] else: dipole_moment += [None] result.reverse_dipole_sign = self._reverse_dipole_sign result.computed_dipole_moment.append(cast(DipoleTuple, tuple(dipole_moment))) result.ph_extracted_dipole_moment.append( (self._ph_x_dipole_shift, self._ph_y_dipole_shift, self._ph_z_dipole_shift)) result.frozen_extracted_dipole_moment.append( (self._x_dipole_shift, self._y_dipole_shift, self._z_dipole_shift)) return result
@staticmethod def _try_reduce_fermionic_operator(fer_op: FermionicOperator, freeze_list: List, remove_list: List) -> Tuple: """ Trying to reduce the fermionic operator w.r.t to freeze and remove list if provided Args: fer_op: fermionic operator freeze_list: freeze list of orbitals remove_list: remove list of orbitals Returns: (fermionic_operator, energy_shift, did_shift) """ # pylint: disable=len-as-condition did_shift = False energy_shift = 0.0 if len(freeze_list) > 0: fer_op, energy_shift = fer_op.fermion_mode_freezing(freeze_list) did_shift = True if len(remove_list) > 0: fer_op = fer_op.fermion_mode_elimination(remove_list) return fer_op, energy_shift, did_shift @staticmethod def _map_fermionic_operator_to_qubit(fer_op: FermionicOperator, qubit_mapping: str, num_particles: List[int], two_qubit_reduction: bool) -> WeightedPauliOperator: """ Args: fer_op: Fermionic Operator qubit_mapping: fermionic to qubit mapping num_particles: number of particles two_qubit_reduction: two qubit reduction Returns: qubit operator """ qubit_op = fer_op.mapping(map_type=qubit_mapping, threshold=0.00000001) if qubit_mapping == 'parity' and two_qubit_reduction: qubit_op = Z2Symmetries.two_qubit_reduction(qubit_op, num_particles) return qubit_op @staticmethod def _build_single_hopping_operator(index, num_particles, num_orbitals, qubit_mapping, two_qubit_reduction, z2_symmetries): h_1 = np.zeros((num_orbitals, num_orbitals), dtype=complex) h_2 = np.zeros((num_orbitals, num_orbitals, num_orbitals, num_orbitals), dtype=complex) if len(index) == 2: i, j = index h_1[i, j] = 4.0 elif len(index) == 4: i, j, k, m = index h_2[i, j, k, m] = 16.0 fer_op = FermionicOperator(h_1, h_2) qubit_op = fer_op.mapping(qubit_mapping) if qubit_mapping == 'parity' and two_qubit_reduction: qubit_op = Z2Symmetries.two_qubit_reduction(qubit_op, num_particles) commutativities = [] if not z2_symmetries.is_empty(): for symmetry in z2_symmetries.symmetries: symmetry_op = WeightedPauliOperator(paulis=[[1.0, symmetry]]) commuting = qubit_op.commute_with(symmetry_op) anticommuting = qubit_op.anticommute_with(symmetry_op) if commuting != anticommuting: # only one of them is True if commuting: commutativities.append(True) elif anticommuting: commutativities.append(False) else: raise AquaError("Symmetry {} is nor commute neither anti-commute " "to exciting operator.".format(symmetry.to_label())) return qubit_op, commutativities
[docs] def build_hopping_operators(self, excitations: Union[str, List[List[int]]] = 'sd' ) -> Tuple[Dict[str, WeightedPauliOperator], Dict[str, List[bool]], Dict[str, List[Any]]]: """Builds the product of raising and lowering operators (basic excitation operators) Args: excitations: The excitations to be included in the eom pseudo-eigenvalue problem. If a string ('s', 'd' or 'sd') then all excitations of the given type will be used. Otherwise a list of custom excitations can directly be provided. Returns: A tuple containing the hopping operators, the types of commutativities and the excitation indices. """ num_alpha, num_beta = self._molecule_info['num_particles'] num_orbitals = self._molecule_info['num_orbitals'] if isinstance(excitations, str): se_list, de_list = UCCSD.compute_excitation_lists([num_alpha, num_beta], num_orbitals, excitation_type=excitations) excitations_list = se_list+de_list else: excitations_list = excitations size = len(excitations_list) # # get all to-be-processed index # mus, nus = np.triu_indices(size) # build all hopping operators hopping_operators: Dict[str, WeightedPauliOperator] = {} type_of_commutativities: Dict[str, List[bool]] = {} excitation_indices = {} to_be_executed_list = [] for idx in range(size): to_be_executed_list += [excitations_list[idx], list(reversed(excitations_list[idx]))] hopping_operators['E_{}'.format(idx)] = None hopping_operators['Edag_{}'.format(idx)] = None type_of_commutativities['E_{}'.format(idx)] = None type_of_commutativities['Edag_{}'.format(idx)] = None excitation_indices['E_{}'.format(idx)] = excitations_list[idx] excitation_indices['Edag_{}'.format(idx)] = list(reversed(excitations_list[idx])) result = parallel_map(self._build_single_hopping_operator, to_be_executed_list, task_args=(num_alpha + num_beta, num_orbitals, self._qubit_mapping, self._two_qubit_reduction, self._molecule_info['z2_symmetries']), num_processes=aqua_globals.num_processes) for key, res in zip(hopping_operators.keys(), result): hopping_operators[key] = res[0] type_of_commutativities[key] = res[1] return hopping_operators, type_of_commutativities, excitation_indices

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.