English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.chemistry.components.bosonic_bases.harmonic_basis

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" Bosonic Harmonic Basis """

from typing import Dict, List, Tuple, cast

import numpy as np

from qiskit.chemistry import WatsonHamiltonian
from .bosonic_basis import BosonicBasis


[docs]class HarmonicBasis(BosonicBasis): """Basis in which the Watson Hamiltonian is expressed. This class uses the Hermite polynomials (eigenstates of the harmonic oscillator) as a modal basis for the expression of the Watson Hamiltonian or any bosonic operator. References: [1] Ollitrault Pauline J., Chemical science 11 (2020): 6842-6855. """
[docs] def __init__(self, watson_hamiltonian: WatsonHamiltonian, basis: List[int], truncation_order: int = 3) -> None: """ Args: watson_hamiltonian: A ``WatsonHamiltonian`` object which contains the hamiltonian information. basis: Is a list defining the number of modals per mode. E.g. for a 3 modes system with 4 modals per mode ``basis = [4, 4, 4]``. truncation_order: where is the Hamiltonian expansion truncation (1 for having only 1-body terms, 2 for having on 1- and 2-body terms...) """ self._watson = watson_hamiltonian self._basis = basis self._basis_size = max(basis) self._truncation_order = truncation_order
@staticmethod def _harmonic_integrals(m: int, n: int, power: int, kinetic_term: bool = False) -> float: r"""Computes the integral of the Hamiltonian with the harmonic basis. This computation is as shown in [1]. Args: m: first modal index n: second modal index power: the exponent on the coordinate (Q, Q^2, Q^3 or Q^4) kinetic_term: needs to be set to true to do the integral of the kinetic part of the hamiltonian d^2/dQ^2 Returns: The value of the integral. Raises: ValueError: If ``power`` is invalid References: [1] J. Chem. Phys. 135, 134108 (2011) https://doi.org/10.1063/1.3644895 (Table 1) """ coeff = 0.0 if power == 1: if m - n == 1: coeff = np.sqrt(m / 2) elif power == 2 and kinetic_term is True: if m - n == 0: coeff = -(m + 1 / 2) elif m - n == 2: coeff = np.sqrt(m * (m - 1)) / 2 # coeff = -coeff elif power == 2 and kinetic_term is False: if m - n == 0: coeff = (m + 1 / 2) elif m - n == 2: coeff = np.sqrt(m * (m - 1)) / 2 elif power == 3: if m - n == 1: coeff = 3 * np.power(m / 2, 3 / 2) elif m - n == 3: coeff = np.sqrt(m * (m - 1) * (m - 2)) / np.power(2, 3 / 2) elif power == 4: if m - n == 0: coeff = (6 * m * (m + 1) + 3) / 4 elif m - n == 2: coeff = (m - 1 / 2) * np.sqrt(m * (m - 1)) elif m - n == 4: coeff = np.sqrt(m * (m - 1) * (m - 2) * (m - 3)) / 4 else: raise ValueError('The Q power is to high, only up to 4 is ' 'currently supported.') return coeff * (np.sqrt(2) ** power) def _is_in_basis(self, indices, order, i): in_basis = True for j in range(order): for modal in [1, 2]: if indices[3 * j + modal][i] >= self._basis[indices[3 * j][i]]: in_basis = False return in_basis
[docs] def convert(self, threshold: float = 1e-6 ) -> List[List[Tuple[List[List[int]], float]]]: """ This prepares an array object representing a bosonic hamiltonian expressed in the harmonic basis. This object can directly be given to the BosonicOperator class to be mapped to a qubit hamiltonian. Args: threshold: the matrix elements of value below this threshold are discarded Returns: List of modes for input to creation of a bosonic hamiltonian in the harmonic basis Raises: ValueError: If problem with order value from computed modes """ num_modes = len(self._basis) num_modals = self._basis_size harmonic_dict = {1: np.zeros((num_modes, num_modals, num_modals)), 2: np.zeros((num_modes, num_modals, num_modals, num_modes, num_modals, num_modals)), 3: np.zeros((num_modes, num_modals, num_modals, num_modes, num_modals, num_modals, num_modes, num_modals, num_modals))} for entry in self._watson.data: # Entry is coeff (float) followed by indices (ints) coeff0 = cast(float, entry[0]) indices = cast(List[int], entry[1:]) kinetic_term = False # Note: these negative indices as detected below are explicitly generated in # _compute_modes for other potential uses. They are not wanted by this logic. if any([index < 0 for index in indices]): kinetic_term = True indices = np.absolute(indices) indexes = {} # type: Dict[int, int] for i in indices: if indexes.get(i) is None: indexes[i] = 1 else: indexes[i] += 1 order = len(indexes.keys()) modes = list(indexes.keys()) if order == 1: for m in range(num_modals): for n in range(m+1): coeff = coeff0 * self._harmonic_integrals( m, n, indexes[modes[0]], kinetic_term=kinetic_term) if abs(coeff) > threshold: harmonic_dict[1][modes[0]-1, m, n] += coeff if m != n: harmonic_dict[1][modes[0] - 1, n, m] += coeff elif order == 2: for m in range(num_modals): for n in range(m+1): coeff1 = coeff0 * self._harmonic_integrals( m, n, indexes[modes[0]], kinetic_term=kinetic_term) for j in range(num_modals): for k in range(j+1): coeff = coeff1 * self._harmonic_integrals( j, k, indexes[modes[1]], kinetic_term=kinetic_term) if abs(coeff) > threshold: harmonic_dict[2][modes[0] - 1, m, n, modes[1] - 1, j, k] += coeff if m != n: harmonic_dict[2][modes[0] - 1, n, m, modes[1] - 1, j, k] += coeff if j != k: harmonic_dict[2][modes[0] - 1, m, n, modes[1] - 1, k, j] += coeff if m != n and j != k: harmonic_dict[2][modes[0] - 1, n, m, modes[1] - 1, k, j] += coeff elif order == 3: for m in range(num_modals): for n in range(m+1): coeff1 = coeff0 * self._harmonic_integrals( m, n, indexes[modes[0]], kinetic_term=kinetic_term) for j in range(num_modals): for k in range(j+1): coeff2 = coeff1 * self._harmonic_integrals( j, k, indexes[modes[1]], kinetic_term=kinetic_term) # pylint: disable=locally-disabled, invalid-name for p in range(num_modals): for q in range(p+1): coeff = coeff2 * self._harmonic_integrals( p, q, indexes[modes[2]], kinetic_term=kinetic_term) if abs(coeff) > threshold: harmonic_dict[3][modes[0] - 1, m, n, modes[1] - 1, j, k, modes[2] - 1, p, q] += coeff if m != n: harmonic_dict[3][modes[0] - 1, n, m, modes[1] - 1, j, k, modes[2] - 1, p, q] += coeff if k != j: harmonic_dict[3][modes[0] - 1, m, n, modes[1] - 1, k, j, modes[2] - 1, p, q] += coeff if p != q: harmonic_dict[3][modes[0] - 1, m, n, modes[1] - 1, j, k, modes[2] - 1, q, p] += coeff if m != n and k != j: harmonic_dict[3][modes[0] - 1, n, m, modes[1] - 1, k, j, modes[2] - 1, p, q] += coeff if m != n and p != q: harmonic_dict[3][modes[0] - 1, n, m, modes[1] - 1, j, k, modes[2] - 1, q, p] += coeff if p != q and k != j: harmonic_dict[3][modes[0] - 1, m, n, modes[1] - 1, k, j, modes[2] - 1, q, p] += coeff if m != n and j != k and p != q: harmonic_dict[3][modes[0] - 1, n, m, modes[1] - 1, k, j, modes[2] - 1, q, p] += coeff else: raise ValueError('Expansion of the PES is too large, only ' 'up to 3-body terms are supported') harmonics = [] # type: List[List[Tuple[List[List[int]], float]]] for idx in range(1, self._truncation_order + 1): all_indices = np.nonzero(harmonic_dict[idx]) if len(all_indices[0]) != 0: harmonics.append([]) values = harmonic_dict[idx][all_indices] for i in range(len(all_indices[0])): if self._is_in_basis(all_indices, idx, i): harmonics[- 1].append(([[all_indices[3 * j][i], all_indices[3 * j + 1][i], all_indices[3 * j + 2][i]] for j in range(idx)], values[i])) return harmonics

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.