English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
  • Docs >
  • Module code >
  • qiskit.chemistry.algorithms.pes_samplers.potentials.harmonic_potential
Shortcuts

Source code for qiskit.chemistry.algorithms.pes_samplers.potentials.harmonic_potential

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""This module implements a 1D Harmonic potential."""

from typing import Tuple, List, Optional
import numpy as np
from scipy.optimize import curve_fit

import qiskit.chemistry.constants as const
from qiskit.chemistry.algorithms.pes_samplers.potentials.potential_base import PotentialBase
from qiskit.chemistry.drivers import Molecule


[docs]class HarmonicPotential(PotentialBase): """Implements a 1D Harmonic potential. Input units are Angstroms (distance between the two atoms), and output units are Hartrees (molecular energy). """ # Works in Angstroms (input) and Hartrees (output)
[docs] def __init__(self, molecule: Molecule) -> None: """ Args: molecule: the underlying molecule. Raises: ValueError: Only implemented for diatomic molecules """ # Initialize with zero-potential. # Later - fit energy values (fit_to_data) self.k = 0.0 self.m_shift = 0.0 self.r_0 = 0.0 self.d_e: Optional[float] = None if molecule.masses is not None: self._m_a = molecule.masses[0] self._m_b = molecule.masses[1] else: raise ValueError( 'Molecule masses need to be provided')
[docs] @staticmethod def fit_function(x: float, k: float, r_0: float, m_shift: float) -> float: """ Functional form of the potential. Args: x: x parameter of harmonic potential functional form k: k parameter of harmonic potential functional form r_0: r_0 parameter of harmonic potential functional form m_shift: m parameter of harmonic potential functional form Returns: harmonic potential functional form """ # K (Hartree/(Ang^2)), r_0 (Angstrom), m_shift (Hartree) return k / 2 * (x - r_0) ** 2 + m_shift
[docs] def eval(self, x: float) -> float: """After fitting the data to the fit function, predict the energy at a point x. Args: x: value to evaluate surface in Returns: value of potential in point x """ return self.fit_function(x, self.k, self.r_0, self.m_shift)
[docs] def update_molecule(self, molecule: Molecule) -> Molecule: """Updates the underlying molecule. Args: molecule: chemistry molecule Raises: ValueError: Only implemented for diatomic molecules """ # Check the provided molecule super().update_molecule(molecule) if len(molecule.masses) != 2: raise ValueError('Harmonic potential only works for diatomic molecules!') self._m_a = molecule.masses[0] self._m_b = molecule.masses[1]
[docs] def fit(self, xdata: List[float], ydata: List[float], initial_vals: Optional[List[float]] = None, bounds_list: Optional[Tuple[List[float], List[float]]] = None) -> None: """Fits a potential to computed molecular energies. Args: xdata: interatomic distance points (Angstroms) ydata: molecular energies (Hartrees) initial_vals: Initial values for fit parameters. None for default. Order of parameters is k, r_0 and m_shift (see fit_function implementation) bounds_list: Bounds for the fit parameters. None for default. Order of parameters is k, r_0 and m_shift (see fit_function implementation) """ # Fits the potential to given x/y data. # If preProcessData is True (i.e. by default!) it only tries to fit # for values around the x where the minimum y was obtained. # do the Harmonic potential fit here, the order of parameters is # [k (Hartrees/(Ang**2)), r_0 (Ang), energy_shift (Hartrees)] h_p0 = (initial_vals if initial_vals is not None else np.array([0.2, 0.735, 1.5])) h_bounds = (bounds_list if bounds_list is not None else ([0, -1, -2], [2, 3.0, 2])) xdata_fit = xdata ydata_fit = ydata fit, _ = curve_fit(self.fit_function, xdata_fit, ydata_fit, p0=h_p0, maxfev=100000, bounds=h_bounds) self.k = fit[0] self.r_0 = fit[1] self.m_shift = fit[2] # Crude approximation of dissociation energy (assuming a reasonable # range of values were given) self.d_e = max(ydata) - min(ydata)
# return
[docs] def get_equilibrium_geometry(self, scaling: float = 1.0) -> float: """Returns the interatomic distance corresponding to minimal energy. Args: scaling: Scaling to change units. (Default is 1.0 for Angstroms) Returns: geometry corresponding to minimal energy """ # Returns the distance for the minimal energy (scaled by 'scaling') # Default units (scaling=1.0) are Angstroms. Scale by 1E-10 to get # meters. return self.r_0 * scaling
[docs] def get_minimal_energy(self, scaling: float = 1.0) -> float: """Returns the smallest molecular energy for the current fit. Args: scaling: Scaling to change units. (Default is 1.0 for Hartrees) Returns: smallest molecular energy for the current fit """ # Returns the distance for the minimal energy (scaled by 'scaling') # Default units (scaling=1.0) are Hartrees. Scale appropriately for # Joules (per molecule or mol). return self.m_shift * scaling
[docs] def dissociation_energy(self, scaling: float = 1.0) -> float: """Returns the estimated dissociation energy for the current fit. Args: scaling: Scaling to change units. (Default is 1.0 for Hartrees) Returns: estimated dissociation energy """ # Hartree/(Ang**2) to Hartree!! 1/Ang**2 -> 1/m**2 k = self.k * 1E20 if self.d_e is not None: k = self.d_e diss_nrg = k - self.vibrational_energy_level(0) # in Hartree return diss_nrg * scaling
[docs] def fundamental_frequency(self) -> float: """Returns the fundamental frequency for the current fit (in s^-1). Returns: fundamental frequency for the current fit """ # Hartree(J)/(Ang**2), need Joules per molecule!! 1/Ang**2 -> 1/m**2 k = self.k * const.HARTREE_TO_J * 1E20 # r0 = self.r_0*1E-10 # angstrom, need meter m_r = (self._m_a * self._m_b) / (self._m_a + self._m_b) # omega_0 in units rad/s converted to 1/s by dividing by 2Pi omega_0 = np.sqrt(k / m_r) / (2 * np.pi) # fundamental frequency in s**-1 return omega_0
[docs] def wave_number(self) -> int: """Returns the wave number for the current fit (in cm^-1). Returns: wave number for the current fit """ return self.fundamental_frequency() / const.C_CM_PER_S
[docs] def vibrational_energy_level(self, n: int) -> float: """ Returns the n-th vibrational energy level for the current fit (in Hartrees). Args: n: vibrational mode Returns: vibrational energy level for the current fit """ omega_0 = self.fundamental_frequency() e_n = const.H_J_S * omega_0 * (n + 0.5) # energy level return e_n * const.J_TO_HARTREE
[docs] @classmethod def process_fit_data(cls, xdata: List[float], ydata: List[float]) -> Tuple[list, list]: """ Mostly for internal use. Preprocesses the data passed to fit_to_data() so that only the points around the minimum are fit (which gives more accurate vibrational modes). Args: xdata: xdata to be considered ydata: ydata to be considered Returns: the processed data that fit better to a harmonic potential """ sort_ind = np.argsort(xdata) ydata_s = ydata[sort_ind] xdata_s = xdata[sort_ind] min_y = min(ydata_s) # array of indices for X for which Y is min x_min = np.where(ydata_s == min_y)[0] # array of indices where X is equal to the value for which Y # is minimum all_of_min = np.array([], dtype=int) for i in x_min: all_of_min = np.concatenate( (all_of_min, np.where(xdata_s == xdata_s[i])[0])) # array of indices where X is equal to the next smaller value left_of_min = [] if min(all_of_min) > 0: left_of_min = np.where( xdata_s == xdata_s[min(all_of_min) - 1])[0] # array of indices where X is equal to the next bigger value right_of_min = [] if max(all_of_min) < (xdata_s.size - 1): right_of_min = np.where( xdata_s == xdata_s[max(all_of_min) + 1])[0] # all those indices together are used for fitting a harmonic # potential (around the min) inds = np.concatenate((left_of_min, all_of_min, right_of_min)) return xdata_s[inds], ydata_s[inds]

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.