English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.chemistry.algorithms.pes_samplers.bopes_sampler

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""The calculation of points on the Born-Oppenheimer Potential Energy Surface (BOPES)."""

import logging
from typing import Optional, List, Dict

import numpy as np
from qiskit.aqua import AquaError
from qiskit.aqua.algorithms import VQAlgorithm
from qiskit.chemistry.drivers import BaseDriver
from qiskit.chemistry.algorithms.ground_state_solvers import GroundStateSolver
from qiskit.chemistry.results.bopes_sampler_result import BOPESSamplerResult
from qiskit.chemistry.algorithms.pes_samplers.extrapolator import Extrapolator, WindowExtrapolator
from qiskit.chemistry.results import EigenstateResult

logger = logging.getLogger(__name__)


[docs]class BOPESSampler: """Class to evaluate the Born-Oppenheimer Potential Energy Surface (BOPES)."""
[docs] def __init__(self, gss: GroundStateSolver, tolerance: float = 1e-3, bootstrap: bool = True, num_bootstrap: Optional[int] = None, extrapolator: Optional[Extrapolator] = None) -> None: """ Args: gss: GroundStateSolver tolerance: Tolerance desired for minimum energy. bootstrap: Whether to warm-start the solution of variational minimum eigensolvers. num_bootstrap: Number of previous points for extrapolation and bootstrapping. If None and a list of extrapolators is defined, the first two points will be used for bootstrapping. If no extrapolator is defined and bootstrap is True, all previous points will be used for bootstrapping. extrapolator: Extrapolator objects that define space/window and method to extrapolate variational parameters. Raises: AquaError: If ``num_boostrap`` is an integer smaller than 2, or if ``num_boostrap`` is larger than 2 and the extrapolator is not an instance of ``WindowExtrapolator``. """ self._gss = gss self._tolerance = tolerance self._bootstrap = bootstrap self._driver = None # type: Optional[BaseDriver] self._points = None # type: Optional[List[float]] self._energies = None # type: Optional[List[float]] self._raw_results = None # type: Optional[Dict[float, EigenstateResult]] self._points_optparams = None # type: Optional[Dict[float, List[float]]] self._num_bootstrap = num_bootstrap self._extrapolator = extrapolator if self._extrapolator: if num_bootstrap is None: # set default number of bootstrapping points to 2 self._num_bootstrap = 2 elif num_bootstrap >= 2: if not isinstance(self._extrapolator, WindowExtrapolator): raise AquaError( 'If num_bootstrap >= 2 then the extrapolator must be an instance ' 'of WindowExtrapolator, got {} instead'.format(self._extrapolator)) self._num_bootstrap = num_bootstrap self._extrapolator.window = num_bootstrap # window for extrapolator else: raise AquaError( 'num_bootstrap must be None or an integer greater than or equal to 2') if isinstance(self._gss.solver, VQAlgorithm): # Save initial point passed to min_eigensolver; # this will be used when NOT bootstrapping self._initial_point = self._gss.solver.initial_point
[docs] def sample(self, driver: BaseDriver, points: List[float]) -> BOPESSamplerResult: """Run the sampler at the given points, potentially with repetitions. Args: driver: BaseDriver specific for the problem. The driver should be based on a Molecule object that has perturbations to be varied. points: The points along the degrees of freedom to evaluate. Returns: BOPES Sampler Result Raises: AquaError: if the driver does not have a molecule specified. """ self._driver = driver if self._driver.molecule is None: raise AquaError('Driver MUST be configured with a Molecule.') # full dictionary of points self._raw_results = self._run_points(points) # create results dictionary with (point, energy) self._points = list(self._raw_results.keys()) self._energies = [] for key in self._raw_results: energy = self._raw_results[key].computed_energies[0] + \ self._raw_results[key].nuclear_repulsion_energy self._energies.append(energy) result = BOPESSamplerResult(self._points, self._energies, self._raw_results) return result
def _run_points(self, points: List[float]) -> Dict[float, EigenstateResult]: """Run the sampler at the given points. Args: points: the points along the single degree of freedom to evaluate Returns: The results for all points. """ raw_results = dict() # type: Dict[float, EigenstateResult] if isinstance(self._gss.solver, VQAlgorithm): self._points_optparams = dict() self._gss.solver.initial_point = self._initial_point # Iterate over the points for i, point in enumerate(points): logger.info('Point %s of %s', i + 1, len(points)) raw_result = self._run_single_point(point) # dict of results raw_results[point] = raw_result return raw_results def _run_single_point(self, point: float) -> EigenstateResult: """Run the sampler at the given single point Args: point: The value of the degree of freedom to evaluate. Returns: Results for a single point. """ # update molecule geometry and thus resulting Hamiltonian based on specified point self._driver.molecule.perturbations = [point] # find closest previously run point and take optimal parameters if isinstance(self._gss.solver, VQAlgorithm) and self._bootstrap: prev_points = list(self._points_optparams.keys()) prev_params = list(self._points_optparams.values()) n_pp = len(prev_points) # set number of points to bootstrap if self._extrapolator is None: n_boot = len(prev_points) # bootstrap all points else: n_boot = self._num_bootstrap # Set initial params # if prev_points not empty if prev_points: if n_pp <= n_boot: distances = np.array(point) - \ np.array(prev_points).reshape(n_pp, -1) # find min 'distance' from point to previous points min_index = np.argmin(np.linalg.norm(distances, axis=1)) # update initial point self._gss.solver.initial_point = prev_params[min_index] else: # extrapolate using saved parameters opt_params = self._points_optparams param_sets = self._extrapolator.extrapolate(points=[point], param_dict=opt_params) # update initial point, note param_set is a dictionary self._gss.solver.initial_point = param_sets.get(point) # the output is an instance of EigenstateResult result = self._gss.solve(self._driver) # Save optimal point to bootstrap if isinstance(self._gss.solver, VQAlgorithm): # at every point evaluation, the optimal params are updated optimal_params = self._gss.solver.optimal_params self._points_optparams[point] = optimal_params return result

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.