English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
Shortcuts

Source code for qiskit.aqua.operators.primitive_ops.matrix_op

# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

""" MatrixOp Class """

from typing import Union, Optional, Set, Dict, List, cast, get_type_hints
import logging
import numpy as np
from scipy.sparse import spmatrix

from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
from qiskit.circuit import ParameterExpression, Instruction
from qiskit.extensions.hamiltonian_gate import HamiltonianGate

from ..operator_base import OperatorBase
from ..primitive_ops.circuit_op import CircuitOp
from ..list_ops.summed_op import SummedOp
from ..list_ops.tensored_op import TensoredOp
from .primitive_op import PrimitiveOp
from ..legacy.matrix_operator import MatrixOperator
from ...utils import arithmetic
from ... import AquaError

logger = logging.getLogger(__name__)


[docs]class MatrixOp(PrimitiveOp): """ Class for Operators represented by matrices, backed by Terra's ``Operator`` module. """
[docs] def __init__(self, primitive: Union[list, np.ndarray, spmatrix, Operator], coeff: Union[int, float, complex, ParameterExpression] = 1.0) -> None: """ Args: primitive: The matrix-like object which defines the behavior of the underlying function. coeff: A coefficient multiplying the primitive Raises: TypeError: invalid parameters. ValueError: invalid parameters. """ primitive_orig = primitive if isinstance(primitive, spmatrix): primitive = primitive.toarray() if isinstance(primitive, (list, np.ndarray)): primitive = Operator(primitive) if not isinstance(primitive, Operator): type_hints = get_type_hints(MatrixOp.__init__).get('primitive') valid_cls = [cls.__name__ for cls in type_hints.__args__] raise TypeError(f"MatrixOp can only be instantiated with {valid_cls}, " f"not '{primitive_orig.__class__.__name__}'") if not primitive.input_dims() == primitive.output_dims(): raise ValueError('Cannot handle non-square matrices yet.') super().__init__(primitive, coeff=coeff)
[docs] def primitive_strings(self) -> Set[str]: return {'Matrix'}
@property def num_qubits(self) -> int: return len(self.primitive.input_dims()) # type: ignore
[docs] def add(self, other: OperatorBase) -> OperatorBase: if not self.num_qubits == other.num_qubits: raise ValueError( 'Sum over operators with different numbers of qubits, {} and {}, is not well ' 'defined'.format(self.num_qubits, other.num_qubits)) if isinstance(other, MatrixOp) and self.primitive == other.primitive: return MatrixOp(self.primitive, coeff=self.coeff + other.coeff) # Terra's Operator cannot handle ParameterExpressions if isinstance(other, MatrixOp) and \ not isinstance(self.coeff, ParameterExpression) and \ not isinstance(other.coeff, ParameterExpression): return MatrixOp( (self.coeff * self.primitive) + (other.coeff * other.primitive)) # type: ignore # Covers Paulis, Circuits, and all else. return SummedOp([self, other])
[docs] def adjoint(self) -> OperatorBase: return MatrixOp(self.primitive.conjugate().transpose(), # type: ignore coeff=np.conj(self.coeff))
[docs] def equals(self, other: OperatorBase) -> bool: if not isinstance(other, MatrixOp): return False if isinstance(self.coeff, ParameterExpression) ^ \ isinstance(other.coeff, ParameterExpression): return False if isinstance(self.coeff, ParameterExpression) and \ isinstance(other.coeff, ParameterExpression): return self.coeff == other.coeff and self.primitive == other.primitive return self.coeff * self.primitive == other.coeff * other.primitive # type: ignore
def _expand_dim(self, num_qubits: int) -> 'MatrixOp': identity = np.identity(2**num_qubits, dtype=complex) return MatrixOp(self.primitive.tensor(Operator(identity)), coeff=self.coeff) # type: ignore
[docs] def tensor(self, other: OperatorBase) -> OperatorBase: if isinstance(other.primitive, Operator): # type: ignore return MatrixOp(self.primitive.tensor(other.primitive), # type: ignore coeff=self.coeff * other.coeff) # type: ignore return TensoredOp([self, other])
[docs] def compose(self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False) -> OperatorBase: new_self, other = self._expand_shorter_operator_and_permute(other, permutation) new_self = cast(MatrixOp, new_self) if front: return other.compose(new_self) if isinstance(other, MatrixOp): return MatrixOp(new_self.primitive.compose(other.primitive, front=True), # type: ignore coeff=new_self.coeff * other.coeff) return super(MatrixOp, new_self).compose(other)
[docs] def permute(self, permutation: Optional[List[int]] = None) -> 'MatrixOp': """Creates a new MatrixOp that acts on the permuted qubits. Args: permutation: A list defining where each qubit should be permuted. The qubit at index j should be permuted to position permutation[j]. Returns: A new MatrixOp representing the permuted operator. Raises: AquaError: if indices do not define a new index for each qubit. """ new_self = self new_matrix_size = max(permutation) + 1 if self.num_qubits != len(permutation): raise AquaError("New index must be defined for each qubit of the operator.") if self.num_qubits < new_matrix_size: # pad the operator with identities new_self = self._expand_dim(new_matrix_size - self.num_qubits) qc = QuantumCircuit(new_matrix_size) # extend the indices to match the size of the new matrix permutation \ = list(filter(lambda x: x not in permutation, range(new_matrix_size))) + permutation # decompose permutation into sequence of transpositions transpositions = arithmetic.transpositions(permutation) for trans in transpositions: qc.swap(trans[0], trans[1]) matrix = CircuitOp(qc).to_matrix() return MatrixOp(matrix.transpose()) @ new_self @ MatrixOp(matrix) # type: ignore
[docs] def to_matrix(self, massive: bool = False) -> np.ndarray: return self.primitive.data * self.coeff # type: ignore
def __str__(self) -> str: prim_str = str(self.primitive) if self.coeff == 1.0: return prim_str else: return "{} * {}".format(self.coeff, prim_str)
[docs] def eval(self, front: Optional[Union[str, Dict[str, complex], np.ndarray, OperatorBase]] = None ) -> Union[OperatorBase, float, complex]: # For other ops' eval we return self.to_matrix_op() here, but that's unnecessary here. if front is None: return self # pylint: disable=cyclic-import,import-outside-toplevel from ..list_ops import ListOp from ..state_fns import StateFn, OperatorStateFn new_front = None # For now, always do this. If it's not performant, we can be more granular. if not isinstance(front, OperatorBase): front = StateFn(front, is_measurement=False) if isinstance(front, ListOp) and front.distributive: new_front = front.combo_fn([self.eval(front.coeff * front_elem) # type: ignore for front_elem in front.oplist]) elif isinstance(front, OperatorStateFn): new_front = OperatorStateFn(self.adjoint().compose(front.to_matrix_op()).compose(self)) elif isinstance(front, OperatorBase): new_front = StateFn(self.to_matrix() @ front.to_matrix()) return new_front
[docs] def exp_i(self) -> OperatorBase: """Return a ``CircuitOp`` equivalent to e^-iH for this operator H""" return CircuitOp(HamiltonianGate(self.primitive, time=self.coeff))
# Op Conversions
[docs] def to_matrix_op(self, massive: bool = False) -> OperatorBase: return self
[docs] def to_instruction(self) -> Instruction: return (self.coeff * self.primitive).to_instruction() # type: ignore
[docs] def to_legacy_op(self, massive: bool = False) -> MatrixOperator: return MatrixOperator(self.to_matrix(massive=massive))

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.