English
Languages
English
Japanese
German
Korean
Portuguese, Brazilian
French
  • Docs >
  • Module code >
  • qiskit.aqua.components.uncertainty_models.multivariate_normal_distribution
Shortcuts

Source code for qiskit.aqua.components.uncertainty_models.multivariate_normal_distribution

# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""
The Multivariate Normal Distribution.
"""

from typing import Optional, List, Union
import numpy as np
from scipy.stats import multivariate_normal
from .multivariate_distribution import MultivariateDistribution

# pylint: disable=invalid-name


[docs]class MultivariateNormalDistribution(MultivariateDistribution): """ The Multivariate Normal Distribution. Provides a discretized and truncated normal distribution loaded into a quantum state. Truncation bounds are given by lower and upper bound and discretization is specified by the number of qubits per dimension. """
[docs] def __init__(self, num_qubits: Union[List[int], np.ndarray], low: Optional[Union[List[float], np.ndarray]] = None, high: Optional[Union[List[float], np.ndarray]] = None, mu: Optional[Union[List[float], np.ndarray]] = None, sigma: Optional[Union[List[float], np.ndarray]] = None) -> None: """ Args: num_qubits: Number of qubits per dimension low: Lower bounds per dimension high: Upper bounds per dimension mu: Expected values sigma: Co-variance matrix """ if not isinstance(sigma, np.ndarray): sigma = np.asarray(sigma) dimension = len(num_qubits) if mu is None: mu = np.zeros(dimension) if sigma is None: sigma = np.eye(dimension) if low is None: low = -np.ones(dimension) if high is None: high = np.ones(dimension) self.mu = mu self.sigma = sigma probs = self._compute_probabilities([], num_qubits, low, high) probs = np.asarray(probs) / np.sum(probs) super().__init__(num_qubits, probs, low, high)
@staticmethod def _replacement(): return 'qiskit.circuit.library.NormalDistribution' def _compute_probabilities(self, probs, num_qubits, low, high, x=None): for y in np.linspace(low[0], high[0], 2**num_qubits[0]): x_ = y if x is None else np.append(x, y) if len(num_qubits) == 1: probs.append(multivariate_normal.pdf(x_, self.mu, self.sigma)) else: probs = self._compute_probabilities(probs, num_qubits[1:], low[1:], high[1:], x_) return probs

© Copyright 2020, Qiskit Development Team. Last updated on 2021/05/25.

Built with Sphinx using a theme provided by Read the Docs.