qiskit.quantum_info.PauliList¶
-
class
PauliList
(data)[source]¶ List of N-qubit Pauli operators.
This class is an efficient representation of a list of
Pauli
operators. It supports 1D numpy array indexing returning aPauli
for integer indexes or aPauliList
for slice or list indices.Initialization
A PauliList object can be initialized in several ways.
For example,
import numpy as np from qiskit.quantum_info import Pauli, PauliList # 1. init from list[str] pauli_list = PauliList(["II", "+ZI", "-iYY"]) print("1. ", pauli_list) pauli1 = Pauli("iXI") pauli2 = Pauli("iZZ") # 2. init from Pauli print("2. ", PauliList(pauli1)) # 3. init from list[Pauli] print("3. ", PauliList([pauli1, pauli2])) # 4. init from np.ndarray z = np.array([[True, True], [False, False]]) x = np.array([[False, True], [True, False]]) phase = np.array([0, 1]) pauli_list = PauliList.from_symplectic(z, x) print("4. ", pauli_list)
1. ['II', 'ZI', '-iYY'] 2. ['iXI'] 3. ['iXI', 'iZZ'] 4. ['YZ', 'IX']
Data Access
The individual Paulis can be accessed and updated using the
[]
operator which accepts integer, lists, or slices for selecting subsets of PauliList. If integer is given, it returns Pauli not PauliList.pauli_list = PauliList(["XX", "ZZ", "IZ"]) print("Integer: ", repr(pauli_list[1])) print("List: ", repr(pauli_list[[0, 2]])) print("Slice: ", repr(pauli_list[0:2]))
Integer: Pauli('ZZ') List: PauliList(['XX', 'IZ']) Slice: PauliList(['XX', 'ZZ'])
Iteration
Rows in the Pauli table can be iterated over like a list. Iteration can also be done using the label or matrix representation of each row using the
label_iter()
andmatrix_iter()
methods.Initialize the PauliList.
- Parameters
data (Pauli or list) – input data for Paulis. If input is a list each item in the list must be a Pauli object or Pauli str.
- Raises
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
-
__init__
(data)[source]¶ Initialize the PauliList.
- Parameters
data (Pauli or list) – input data for Paulis. If input is a list each item in the list must be a Pauli object or Pauli str.
- Raises
QiskitError – if input array is invalid shape.
- Additional Information:
The input array is not copied so multiple Pauli tables can share the same underlying array.
Methods
__init__
(data)Initialize the PauliList.
adjoint
()Return the adjoint of each Pauli in the list.
anticommutes
(other[, qargs])Return True if other Pauli that anticommutes with other.
anticommutes_with_all
(other)Return indexes of rows that commute other.
argsort
([weight, phase])Return indices for sorting the rows of the table.
commutes
(other[, qargs])Return True for each Pauli that commutes with other.
commutes_with_all
(other)Return indexes of rows that commute other.
compose
(other[, qargs, front, inplace])Return the composition self∘other for each Pauli in the list.
Return the conjugate of each Pauli in the list.
copy
()Make a deep copy of current operator.
delete
(ind[, qubit])Return a copy with Pauli rows deleted from table.
dot
(other[, qargs, inplace])Return the composition other∘self for each Pauli in the list.
equiv
(other)Entrywise comparison of Pauli equivalence up to global phase.
evolve
(other[, qargs])Evolve the Pauli by a Clifford.
expand
(other)Return the expand product of each Pauli in the list.
from_symplectic
(z, x[, phase])Construct a PauliList from a symplectic data.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
insert
(ind, value[, qubit])Insert Pauli’s into the table.
inverse
()Return the inverse of each Pauli in the list.
Return a label representation iterator.
matrix_iter
([sparse])Return a matrix representation iterator.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the compose of a operator with itself n times.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
sort
([weight, phase])Sort the rows of the table.
tensor
(other)Return the tensor product with each Pauli in the list.
to_labels
([array])Convert a PauliList to a list Pauli string labels.
to_matrix
([sparse, array])Convert to a list or array of Pauli matrices.
Return the transpose of each Pauli in the list.
unique
([return_index, return_counts])Return unique Paulis from the table.
Attributes
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the phase exponent of the PauliList.
Return the qargs for the operator.
Return operator settings.
The full shape of the
array()
The number of Pauli rows in the table.
The x array for the symplectic representation.
The z array for the symplectic representation.
-
anticommutes
(other, qargs=None)[source]¶ Return True if other Pauli that anticommutes with other.
- Parameters
other (PauliList) – another PauliList operator.
qargs (list) – qubits to apply dot product on (default: None).
- Returns
True if Pauli’s anticommute, False if they commute.
- Return type
bool
-
anticommutes_with_all
(other)[source]¶ Return indexes of rows that commute other.
If other is a multi-row Pauli list the returned vector indexes rows of the current PauliList that anti-commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
- Returns
index array of the anti-commuting rows.
- Return type
array
-
argsort
(weight=False, phase=False)[source]¶ Return indices for sorting the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
- Parameters
weight (bool) – Optionally sort by weight if True (Default: False).
phase (bool) – Optionally sort by phase before weight or order (Default: False).
- Returns
the indices for sorting the table.
- Return type
array
-
commutes
(other, qargs=None)[source]¶ Return True for each Pauli that commutes with other.
- Parameters
other (PauliList) – another PauliList operator.
qargs (list) – qubits to apply dot product on (default: None).
- Returns
True if Pauli’s commute, False if they anti-commute.
- Return type
bool
-
commutes_with_all
(other)[source]¶ Return indexes of rows that commute other.
If other is a multi-row Pauli list the returned vector indexes rows of the current PauliList that commute with all Pauli’s in other. If no rows satisfy the condition the returned array will be empty.
- Parameters
other (PauliList) – a single Pauli or multi-row PauliList.
- Returns
index array of the commuting rows.
- Return type
array
-
compose
(other, qargs=None, front=False, inplace=False)[source]¶ Return the composition self∘other for each Pauli in the list.
- Parameters
other (PauliList) – another PauliList.
qargs (None or list) – qubits to apply dot product on (Default: None).
front (bool) – If True use dot composition method [default: False].
inplace (bool) – If True update in-place (default: False).
- Returns
the list of composed Paulis.
- Return type
- Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs.
-
copy
()¶ Make a deep copy of current operator.
-
delete
(ind, qubit=False)[source]¶ Return a copy with Pauli rows deleted from table.
When deleting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- Parameters
ind (int or list) – index(es) to delete.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- Returns
the resulting table with the entries removed.
- Return type
- Raises
QiskitError – if ind is out of bounds for the array size or number of qubits.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None, inplace=False)[source]¶ Return the composition other∘self for each Pauli in the list.
- Parameters
other (PauliList) – another PauliList.
qargs (None or list) – qubits to apply dot product on (Default: None).
inplace (bool) – If True update in-place (default: False).
- Returns
the list of composed Paulis.
- Return type
- Raises
QiskitError – if other cannot be converted to a PauliList, does not have either 1 or the same number of Paulis as the current list, or has the wrong number of qubits for the specified qargs.
-
evolve
(other, qargs=None)[source]¶ Evolve the Pauli by a Clifford.
This returns the Pauli \(P^\prime = C.P.C^\dagger\).
- Parameters
other (Pauli or Clifford or QuantumCircuit) – The Clifford operator to evolve by.
qargs (list) – a list of qubits to apply the Clifford to.
- Returns
the Pauli \(C.P.C^\dagger\).
- Return type
- Raises
QiskitError – if the Clifford number of qubits and qargs don’t match.
-
classmethod
from_symplectic
(z, x, phase=0)[source]¶ Construct a PauliList from a symplectic data.
- Parameters
z (np.ndarray) – 2D boolean Numpy array.
x (np.ndarray) – 2D boolean Numpy array.
phase (np.ndarray or None) – Optional, 1D integer array from Z_4.
- Returns
the constructed PauliList.
- Return type
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
insert
(ind, value, qubit=False)[source]¶ Insert Pauli’s into the table.
When inserting qubits the qubit index is the same as the column index of the underlying
X
andZ
arrays.- Parameters
ind (int) – index to insert at.
value (PauliList) – values to insert.
qubit (bool) – if True delete qubit columns, otherwise delete Pauli rows (Default: False).
- Returns
the resulting table with the entries inserted.
- Return type
- Raises
QiskitError – if the insertion index is invalid.
-
label_iter
()[source]¶ Return a label representation iterator.
This is a lazy iterator that converts each row into the string label only as it is used. To convert the entire table to labels use the
to_labels()
method.- Returns
label iterator object for the PauliList.
- Return type
LabelIterator
-
matrix_iter
(sparse=False)[source]¶ Return a matrix representation iterator.
This is a lazy iterator that converts each row into the Pauli matrix representation only as it is used. To convert the entire table to matrices use the
to_matrix()
method.- Parameters
sparse (bool) – optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False)
- Returns
matrix iterator object for the PauliList.
- Return type
MatrixIterator
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
property
phase
¶ Return the phase exponent of the PauliList.
-
power
(n)¶ Return the compose of a operator with itself n times.
- Parameters
n (int) – the number of times to compose with self (n>0).
- Returns
the n-times composed operator.
- Return type
- Raises
QiskitError – if the input and output dimensions of the operator are not equal, or the power is not a positive integer.
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
property
settings
¶ Return operator settings.
-
property
shape
¶ The full shape of the
array()
-
property
size
¶ The number of Pauli rows in the table.
-
sort
(weight=False, phase=False)[source]¶ Sort the rows of the table.
The default sort method is lexicographic sorting by qubit number. By using the weight kwarg the output can additionally be sorted by the number of non-identity terms in the Pauli, where the set of all Pauli’s of a given weight are still ordered lexicographically.
Example
Consider sorting all a random ordering of all 2-qubit Paulis
from numpy.random import shuffle from qiskit.quantum_info.operators import PauliList # 2-qubit labels labels = ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] # Shuffle Labels shuffle(labels) pt = PauliList(labels) print('Initial Ordering') print(pt) # Lexicographic Ordering srt = pt.sort() print('Lexicographically sorted') print(srt) # Weight Ordering srt = pt.sort(weight=True) print('Weight sorted') print(srt)
Initial Ordering ['XI', 'YI', 'ZX', 'IY', 'YX', 'IX', 'YZ', 'ZI', 'XY', 'IZ', 'XZ', 'YY', 'ZY', 'ZZ', 'XX', 'II'] Lexicographically sorted ['II', 'IX', 'IY', 'IZ', 'XI', 'XX', 'XY', 'XZ', 'YI', 'YX', 'YY', 'YZ', 'ZI', 'ZX', 'ZY', 'ZZ'] Weight sorted ['II', 'IX', 'IY', 'IZ', 'XI', 'YI', 'ZI', 'XX', 'XY', 'XZ', 'YX', 'YY', 'YZ', 'ZX', 'ZY', 'ZZ']
- Parameters
weight (bool) – optionally sort by weight if True (Default: False).
phase (bool) – Optionally sort by phase before weight or order (Default: False).
- Returns
a sorted copy of the original table.
- Return type
-
to_labels
(array=False)[source]¶ Convert a PauliList to a list Pauli string labels.
For large PauliLists converting using the
array=True
kwarg will be more efficient since it allocates memory for the full Numpy array of labels in advance.Table 8 Pauli Representations¶ Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- Parameters
array (bool) – return a Numpy array if True, otherwise return a list (Default: False).
- Returns
The rows of the PauliList in label form.
- Return type
list or array
-
to_matrix
(sparse=False, array=False)[source]¶ Convert to a list or array of Pauli matrices.
For large PauliLists converting using the
array=True
kwarg will be more efficient since it allocates memory a full rank-3 Numpy array of matrices in advance.Table 9 Pauli Representations¶ Label
Symplectic
Matrix
"I"
\([0, 0]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
"X"
\([1, 0]\)
\(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)
"Y"
\([1, 1]\)
\(\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\)
"Z"
\([0, 1]\)
\(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)
- Parameters
sparse (bool) – if True return sparse CSR matrices, otherwise return dense Numpy arrays (Default: False).
array (bool) – return as rank-3 numpy array if True, otherwise return a list of Numpy arrays (Default: False).
- Returns
A list of dense Pauli matrices if array=False and sparse=False. list: A list of sparse Pauli matrices if array=False and sparse=True. array: A dense rank-3 array of Pauli matrices if array=True.
- Return type
list
-
unique
(return_index=False, return_counts=False)[source]¶ Return unique Paulis from the table.
Example
from qiskit.quantum_info.operators import PauliList pt = PauliList(['X', 'Y', '-X', 'I', 'I', 'Z', 'X', 'iZ']) unique = pt.unique() print(unique)
['X', 'Y', '-X', 'I', 'Z', 'iZ']
- Parameters
return_index (bool) – If True, also return the indices that result in the unique array. (Default: False)
return_counts (bool) – If True, also return the number of times each unique item appears in the table.
- Returns
- unique
the table of the unique rows.
- unique_indices: np.ndarray, optional
The indices of the first occurrences of the unique values in the original array. Only provided if
return_index
is True.- unique_counts: np.array, optional
The number of times each of the unique values comes up in the original array. Only provided if
return_counts
is True.
- Return type
-
property
x
¶ The x array for the symplectic representation.
-
property
z
¶ The z array for the symplectic representation.