qiskit.optimization.algorithms.RecursiveMinimumEigenOptimizer¶
-
class
RecursiveMinimumEigenOptimizer
(min_eigen_optimizer, min_num_vars=1, min_num_vars_optimizer=None, penalty=None, history=<IntermediateResult.LAST_ITERATION: 1>, converters=None)[source]¶ A meta-algorithm that applies a recursive optimization.
The recursive minimum eigen optimizer applies a recursive optimization on top of
MinimumEigenOptimizer
. The algorithm is introduced in [1].Examples
Outline of how to use this class:
from qiskit.aqua.algorithms import QAOA from qiskit.optimization.problems import QuadraticProgram from qiskit.optimization.algorithms import RecursiveMinimumEigenOptimizer problem = QuadraticProgram() # specify problem here # specify minimum eigen solver to be used, e.g., QAOA qaoa = QAOA(...) optimizer = RecursiveMinimumEigenOptimizer(qaoa) result = optimizer.solve(problem)
References
- [1]: Bravyi et al. (2019), Obstacles to State Preparation and Variational Optimization
from Symmetry Protection. http://arxiv.org/abs/1910.08980.
Initializes the recursive minimum eigen optimizer.
This initializer takes a
MinimumEigenOptimizer
, the parameters to specify until when to to apply the iterative scheme, and the optimizer to be applied once the threshold number of variables is reached.- Parameters
min_eigen_optimizer (
MinimumEigenOptimizer
) – The eigen optimizer to use in every iteration.min_num_vars (
int
) – The minimum number of variables to apply the recursive scheme. If this threshold is reached, the min_num_vars_optimizer is used.min_num_vars_optimizer (
Optional
[OptimizationAlgorithm
]) – This optimizer is used after the recursive scheme for the problem with the remaining variables.penalty (
Optional
[float
]) – The factor that is used to scale the penalty terms corresponding to linear equality constraints.history (
Optional
[IntermediateResult
]) – Whether the intermediate results are stored. Default value isLAST_ITERATION
.converters (
Union
[QuadraticProgramConverter
,List
[QuadraticProgramConverter
],None
]) – The converters to use for converting a problem into a different form. By default, when None is specified, an internally created instance ofQuadraticProgramToQubo
will be used.
- Raises
QiskitOptimizationError – In case of invalid parameters (num_min_vars < 1).
TypeError – When there one of converters is an invalid type.
-
__init__
(min_eigen_optimizer, min_num_vars=1, min_num_vars_optimizer=None, penalty=None, history=<IntermediateResult.LAST_ITERATION: 1>, converters=None)[source]¶ Initializes the recursive minimum eigen optimizer.
This initializer takes a
MinimumEigenOptimizer
, the parameters to specify until when to to apply the iterative scheme, and the optimizer to be applied once the threshold number of variables is reached.- Parameters
min_eigen_optimizer (
MinimumEigenOptimizer
) – The eigen optimizer to use in every iteration.min_num_vars (
int
) – The minimum number of variables to apply the recursive scheme. If this threshold is reached, the min_num_vars_optimizer is used.min_num_vars_optimizer (
Optional
[OptimizationAlgorithm
]) – This optimizer is used after the recursive scheme for the problem with the remaining variables.penalty (
Optional
[float
]) – The factor that is used to scale the penalty terms corresponding to linear equality constraints.history (
Optional
[IntermediateResult
]) – Whether the intermediate results are stored. Default value isLAST_ITERATION
.converters (
Union
[QuadraticProgramConverter
,List
[QuadraticProgramConverter
],None
]) – The converters to use for converting a problem into a different form. By default, when None is specified, an internally created instance ofQuadraticProgramToQubo
will be used.
- Raises
QiskitOptimizationError – In case of invalid parameters (num_min_vars < 1).
TypeError – When there one of converters is an invalid type.
Methods
__init__
(min_eigen_optimizer[, …])Initializes the recursive minimum eigen optimizer.
get_compatibility_msg
(problem)Checks whether a given problem can be solved with this optimizer.
is_compatible
(problem)Checks whether a given problem can be solved with the optimizer implementing this method.
solve
(problem)Tries to solve the given problem using the recursive optimizer.
-
get_compatibility_msg
(problem)[source]¶ Checks whether a given problem can be solved with this optimizer.
Checks whether the given problem is compatible, i.e., whether the problem can be converted to a QUBO, and otherwise, returns a message explaining the incompatibility.
- Parameters
problem (
QuadraticProgram
) – The optimization problem to check compatibility.- Return type
str
- Returns
A message describing the incompatibility.
-
is_compatible
(problem)¶ Checks whether a given problem can be solved with the optimizer implementing this method.
- Parameters
problem (
QuadraticProgram
) – The optimization problem to check compatibility.- Return type
bool
- Returns
Returns True if the problem is compatible, False otherwise.
-
solve
(problem)[source]¶ Tries to solve the given problem using the recursive optimizer.
Runs the optimizer to try to solve the optimization problem.
- Parameters
problem (
QuadraticProgram
) – The problem to be solved.- Return type
OptimizationResult
- Returns
The result of the optimizer applied to the problem.
- Raises
QiskitOptimizationError – Incompatible problem.
QiskitOptimizationError – Infeasible due to variable substitution