qiskit.optimization.algorithms.MinimumEigenOptimizationResult¶
-
class
MinimumEigenOptimizationResult
(x, fval, variables, status, samples=None, min_eigen_solver_result=None, raw_samples=None)[source]¶ Minimum Eigen Optimizer Result.
- Parameters
x (
Union
[List
[float
],ndarray
]) – the optimal value found byMinimumEigensolver
.fval (
float
) – the optimal function value.variables (
List
[Variable
]) – the list of variables of the optimization problem.status (
OptimizationResultStatus
) – the termination status of the optimization algorithm.min_eigen_solver_result (
Optional
[MinimumEigensolverResult
]) – the result obtained from the underlying algorithm.samples (
Optional
[List
[SolutionSample
]]) – the x value, the objective function value of the original problem, the probability, and the status of sampling.raw_samples (
Optional
[List
[SolutionSample
]]) – the x values of the QUBO, the objective function value of the QUBO, and the probability of sampling.
-
__init__
(x, fval, variables, status, samples=None, min_eigen_solver_result=None, raw_samples=None)[source]¶ - Parameters
x (
Union
[List
[float
],ndarray
]) – the optimal value found byMinimumEigensolver
.fval (
float
) – the optimal function value.variables (
List
[Variable
]) – the list of variables of the optimization problem.status (
OptimizationResultStatus
) – the termination status of the optimization algorithm.min_eigen_solver_result (
Optional
[MinimumEigensolverResult
]) – the result obtained from the underlying algorithm.samples (
Optional
[List
[SolutionSample
]]) – the x value, the objective function value of the original problem, the probability, and the status of sampling.raw_samples (
Optional
[List
[SolutionSample
]]) – the x values of the QUBO, the objective function value of the QUBO, and the probability of sampling.
Methods
__init__
(x, fval, variables, status[, …])- type x
Union
[List
[float
],ndarray
]
Get <Zi x Zj> correlation matrix from samples.
Attributes
Returns the optimal function value.
Returns a result object obtained from the instance of
MinimumEigensolver
.Return the original results object from the optimization algorithm.
Returns the list of raw solution samples of
MinimumEigensolver
.Returns the list of solution samples
Returns the termination status of the optimization algorithm.
Returns the list of variable names of the optimization problem.
Returns the list of variables of the optimization problem.
Returns the optimal value as a dictionary of the variable name and corresponding value.
Returns the optimal value found in the optimization or None in case of FAILURE.
-
property
fval
¶ Returns the optimal function value.
- Return type
float
- Returns
The function value corresponding to the optimal value found in the optimization.
-
property
min_eigen_solver_result
¶ Returns a result object obtained from the instance of
MinimumEigensolver
.- Return type
MinimumEigensolverResult
-
property
raw_results
¶ Return the original results object from the optimization algorithm.
Currently a dump for any leftovers.
- Return type
Any
- Returns
Additional result information of the optimization algorithm.
-
property
raw_samples
¶ Returns the list of raw solution samples of
MinimumEigensolver
.- Return type
Optional
[List
[SolutionSample
]]- Returns
The list of raw solution samples of
MinimumEigensolver
.
-
property
samples
¶ Returns the list of solution samples
- Return type
List
[SolutionSample
]- Returns
The list of solution samples.
-
property
status
¶ Returns the termination status of the optimization algorithm.
- Return type
OptimizationResultStatus
- Returns
The termination status of the algorithm.
-
property
variable_names
¶ Returns the list of variable names of the optimization problem.
- Return type
List
[str
]- Returns
The list of variable names of the optimization problem.
-
property
variables
¶ Returns the list of variables of the optimization problem.
- Return type
List
[Variable
]- Returns
The list of variables.
-
property
variables_dict
¶ Returns the optimal value as a dictionary of the variable name and corresponding value.
- Return type
Dict
[str
,float
]- Returns
The optimal value as a dictionary of the variable name and corresponding value.
-
property
x
¶ Returns the optimal value found in the optimization or None in case of FAILURE.
- Return type
Optional
[ndarray
]- Returns
The optimal value found in the optimization.