qiskit.aqua.components.optimizers.GSLS¶
-
class
GSLS
(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50, max_iter=None)[source]¶ Gaussian-smoothed Line Search.
An implementation of the line search algorithm described in https://arxiv.org/pdf/1905.01332.pdf, using gradient approximation based on Gaussian-smoothed samples on a sphere.
- Parameters
maxiter (
int
) – Maximum number of iterations.max_eval (
int
) – Maximum number of evaluations.disp (
bool
) – Set to True to display convergence messages.sampling_radius (
float
) – Sampling radius to determine gradient estimate.sample_size_factor (
int
) – The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.initial_step_size (
float
) – Initial step size for the descent algorithm.min_step_size (
float
) – Minimum step size for the descent algorithm.step_size_multiplier (
float
) – Step size reduction after unsuccessful steps, in the interval (0, 1).armijo_parameter (
float
) – Armijo parameter for sufficient decrease criterion, in the interval (0, 1).min_gradient_norm (
float
) – If the gradient norm is below this threshold, the algorithm stops.max_failed_rejection_sampling (
int
) – Maximum number of attempts to sample points within bounds.max_iter (
Optional
[int
]) – Deprecated, use maxiter.
-
__init__
(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50, max_iter=None)[source]¶ - Parameters
maxiter (
int
) – Maximum number of iterations.max_eval (
int
) – Maximum number of evaluations.disp (
bool
) – Set to True to display convergence messages.sampling_radius (
float
) – Sampling radius to determine gradient estimate.sample_size_factor (
int
) – The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.initial_step_size (
float
) – Initial step size for the descent algorithm.min_step_size (
float
) – Minimum step size for the descent algorithm.step_size_multiplier (
float
) – Step size reduction after unsuccessful steps, in the interval (0, 1).armijo_parameter (
float
) – Armijo parameter for sufficient decrease criterion, in the interval (0, 1).min_gradient_norm (
float
) – If the gradient norm is below this threshold, the algorithm stops.max_failed_rejection_sampling (
int
) – Maximum number of attempts to sample points within bounds.max_iter (
Optional
[int
]) – Deprecated, use maxiter.
Methods
__init__
([maxiter, max_eval, disp, …])- type maxiter
int
Return support level dictionary.
gradient_approximation
(n, x, x_value, …)Construct gradient approximation from given sample.
gradient_num_diff
(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
ls_optimize
(n, obj_fun, initial_point, …)Run the line search optimization.
optimize
(num_vars, objective_function[, …])Perform optimization.
Print algorithm-specific options.
sample_points
(n, x, num_points)Sample
num_points
points aroundx
on then
-sphere of specified radius.sample_set
(n, x, var_lb, var_ub, num_points)Construct sample set of given size.
set_max_evals_grouped
(limit)Set max evals grouped
set_options
(**kwargs)Sets or updates values in the options dictionary.
wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
-
property
bounds_support_level
¶ Returns bounds support level
-
get_support_level
()[source]¶ Return support level dictionary.
- Return type
Dict
[str
,int
]- Returns
A dictionary containing the support levels for different options.
-
gradient_approximation
(n, x, x_value, directions, sample_set_x, sample_set_y)[source]¶ Construct gradient approximation from given sample.
- Parameters
n (
int
) – Dimension of the problem.x (
ndarray
) – Point around which the sample set was constructed.x_value (
float
) – Objective function value at x.directions (
ndarray
) – Directions of the sample points wrt the central point x, as a 2D array.sample_set_x (
ndarray
) – x-coordinates of the sample set, one point per row, as a 2D array.sample_set_y (
ndarray
) – Objective function values of the points in sample_set_x, as a 1D array.
- Return type
ndarray
- Returns
Gradient approximation at x, as a 1D array.
-
static
gradient_num_diff
(x_center, f, epsilon, max_evals_grouped=1)¶ We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters
x_center (ndarray) – point around which we compute the gradient
f (func) – the function of which the gradient is to be computed.
epsilon (float) – the epsilon used in the numeric differentiation.
max_evals_grouped (int) – max evals grouped
- Returns
the gradient computed
- Return type
grad
-
property
gradient_support_level
¶ Returns gradient support level
-
property
initial_point_support_level
¶ Returns initial point support level
-
property
is_bounds_ignored
¶ Returns is bounds ignored
-
property
is_bounds_required
¶ Returns is bounds required
-
property
is_bounds_supported
¶ Returns is bounds supported
-
property
is_gradient_ignored
¶ Returns is gradient ignored
-
property
is_gradient_required
¶ Returns is gradient required
-
property
is_gradient_supported
¶ Returns is gradient supported
-
property
is_initial_point_ignored
¶ Returns is initial point ignored
-
property
is_initial_point_required
¶ Returns is initial point required
-
property
is_initial_point_supported
¶ Returns is initial point supported
-
ls_optimize
(n, obj_fun, initial_point, var_lb, var_ub)[source]¶ Run the line search optimization.
- Parameters
n (
int
) – Dimension of the problem.obj_fun (
Callable
) – Objective function.initial_point (
ndarray
) – Initial point.var_lb (
ndarray
) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.var_ub (
ndarray
) – Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below.
- Return type
Tuple
[ndarray
,float
,int
,float
]- Returns
Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.
- Raises
ValueError – If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.
-
optimize
(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]¶ Perform optimization.
- Parameters
num_vars (int) – Number of parameters to be optimized.
objective_function (callable) – A function that computes the objective function.
gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
initial_point (numpy.ndarray[float]) – Initial point.
- Return type
Tuple
[ndarray
,float
,int
]- Returns
- point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
- Raises
ValueError – invalid input
-
print_options
()¶ Print algorithm-specific options.
-
sample_points
(n, x, num_points)[source]¶ Sample
num_points
points aroundx
on then
-sphere of specified radius.The radius of the sphere is
self._options['sampling_radius']
.- Parameters
n (
int
) – Dimension of the problem.x (
ndarray
) – Point around which the sample set is constructed.num_points (
int
) – Number of points in the sample set.
- Return type
Tuple
[ndarray
,ndarray
]- Returns
A tuple containing the sampling points and the directions.
-
sample_set
(n, x, var_lb, var_ub, num_points)[source]¶ Construct sample set of given size.
- Parameters
n (
int
) – Dimension of the problem.x (
ndarray
) – Point around which the sample set is constructed.var_lb (
ndarray
) – Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.var_ub (
ndarray
) – Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above.num_points (
int
) – Number of points in the sample set.
- Return type
Tuple
[ndarray
,ndarray
]- Returns
Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.
- Raises
RuntimeError – If not enough samples could be generated within the bounds.
-
set_max_evals_grouped
(limit)¶ Set max evals grouped
-
set_options
(**kwargs)¶ Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters
kwargs (dict) – options, given as name=value.
-
property
setting
¶ Return setting
-
static
wrap_function
(function, args)¶ Wrap the function to implicitly inject the args at the call of the function.
- Parameters
function (func) – the target function
args (tuple) – the args to be injected
- Returns
wrapper
- Return type
function_wrapper