qiskit.aqua.components.optimizers.AQGD¶
-
class
AQGD
(maxiter=1000, eta=1.0, tol=1e-06, disp=False, momentum=0.25, param_tol=1e-06, averaging=10)[source]¶ Analytic Quantum Gradient Descent (AQGD) with Epochs optimizer. Performs gradient descent optimization with a momentum term, analytic gradients, and customized step length schedule for parametrized quantum gates, i.e. Pauli Rotations. See, for example:
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. (2018). Quantum circuit learning. Phys. Rev. A 98, 032309. https://arxiv.org/abs/1803.00745
Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, Nathan Killoran. (2019). Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 032331. https://arxiv.org/abs/1811.11184
for further details on analytic gradients of parametrized quantum gates.
Gradients are computed “analytically” using the quantum circuit when evaluating the objective function.
Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
- Parameters
maxiter (
Union
[int
,List
[int
]]) – Maximum number of iterations (full gradient steps)eta (
Union
[float
,List
[float
]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * derivtol (
float
) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.disp (
bool
) – Set to True to display convergence messages.momentum (
Union
[float
,List
[float
]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)param_tol (
float
) – Tolerance for change in norm of parameters.averaging (
int
) – Length of window over which to average objective values for objective convergence criterion
- Raises
AquaError – If the length of
maxiter
, momentum`, andeta
is not the same.
-
__init__
(maxiter=1000, eta=1.0, tol=1e-06, disp=False, momentum=0.25, param_tol=1e-06, averaging=10)[source]¶ Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
- Parameters
maxiter (
Union
[int
,List
[int
]]) – Maximum number of iterations (full gradient steps)eta (
Union
[float
,List
[float
]]) – The coefficient of the gradient update. Increasing this value results in larger step sizes: param = previous_param - eta * derivtol (
float
) – Tolerance for change in windowed average of objective values. Convergence occurs when either objective tolerance is met OR parameter tolerance is met.disp (
bool
) – Set to True to display convergence messages.momentum (
Union
[float
,List
[float
]]) – Bias towards the previous gradient momentum in current update. Must be within the bounds: [0,1)param_tol (
float
) – Tolerance for change in norm of parameters.averaging (
int
) – Length of window over which to average objective values for objective convergence criterion
- Raises
AquaError – If the length of
maxiter
, momentum`, andeta
is not the same.
Methods
__init__
([maxiter, eta, tol, disp, …])Performs Analytical Quantum Gradient Descent (AQGD) with Epochs.
Support level dictionary
gradient_num_diff
(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
optimize
(num_vars, objective_function[, …])Perform optimization.
Print algorithm-specific options.
set_max_evals_grouped
(limit)Set max evals grouped
set_options
(**kwargs)Sets or updates values in the options dictionary.
wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
-
property
bounds_support_level
¶ Returns bounds support level
-
get_support_level
()[source]¶ Support level dictionary
- Returns
- gradient, bounds and initial point
support information that is ignored/required.
- Return type
Dict[str, int]
-
static
gradient_num_diff
(x_center, f, epsilon, max_evals_grouped=1)¶ We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters
x_center (ndarray) – point around which we compute the gradient
f (func) – the function of which the gradient is to be computed.
epsilon (float) – the epsilon used in the numeric differentiation.
max_evals_grouped (int) – max evals grouped
- Returns
the gradient computed
- Return type
grad
-
property
gradient_support_level
¶ Returns gradient support level
-
property
initial_point_support_level
¶ Returns initial point support level
-
property
is_bounds_ignored
¶ Returns is bounds ignored
-
property
is_bounds_required
¶ Returns is bounds required
-
property
is_bounds_supported
¶ Returns is bounds supported
-
property
is_gradient_ignored
¶ Returns is gradient ignored
-
property
is_gradient_required
¶ Returns is gradient required
-
property
is_gradient_supported
¶ Returns is gradient supported
-
property
is_initial_point_ignored
¶ Returns is initial point ignored
-
property
is_initial_point_required
¶ Returns is initial point required
-
property
is_initial_point_supported
¶ Returns is initial point supported
-
optimize
(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]¶ Perform optimization.
- Parameters
num_vars (int) – Number of parameters to be optimized.
objective_function (callable) – A function that computes the objective function.
gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
initial_point (numpy.ndarray[float]) – Initial point.
- Return type
Tuple
[ndarray
,float
,int
]- Returns
- point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
- Raises
ValueError – invalid input
-
print_options
()¶ Print algorithm-specific options.
-
set_max_evals_grouped
(limit)¶ Set max evals grouped
-
set_options
(**kwargs)¶ Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters
kwargs (dict) – options, given as name=value.
-
property
setting
¶ Return setting
-
static
wrap_function
(function, args)¶ Wrap the function to implicitly inject the args at the call of the function.
- Parameters
function (func) – the target function
args (tuple) – the args to be injected
- Returns
wrapper
- Return type
function_wrapper