qiskit.algorithms.optimizers.GradientDescent¶
-
class
GradientDescent
(maxiter=100, learning_rate=0.01, tol=1e-07, callback=None, perturbation=None)[source]¶ The gradient descent minimization routine.
For a function \(f\) and an initial point \(\vec\theta_0\), the standard (or “vanilla”) gradient descent method is an iterative scheme to find the minimum \(\vec\theta^*\) of \(f\) by updating the parameters in the direction of the negative gradient of \(f\)
\[\vec\theta_{n+1} = \vec\theta_{n} - \vec\eta\nabla f(\vec\theta_{n}),\]for a small learning rate \(\eta > 0\).
You can either provide the analytic gradient \(\vec\nabla f\) as
gradient_function
in theoptimize
method, or, if you do not provide it, use a finite difference approximation of the gradient. To adapt the size of the perturbation in the finite difference gradients, set theperturbation
property in the initializer.This optimizer supports a callback function. If provided in the initializer, the optimizer will call the callback in each iteration with the following information in this order: current number of function values, current parameters, current function value, norm of current gradient.
Examples
A minimum example that will use finite difference gradients with a default perturbation of 0.01 and a default learning rate of 0.01.
An example where the learning rate is an iterator and we supply the analytic gradient. Note how much faster this convergences (i.e. less
nfevs
) compared to the previous example.- Parameters
maxiter (
int
) – The maximum number of iterations.learning_rate (
Union
[float
,Callable
[[],Iterator
]]) – A constant or generator yielding learning rates for the parameter updates. See the docstring for an example.tol (
float
) – If the norm of the parameter update is smaller than this threshold, the optimizer is converged.perturbation (
Optional
[float
]) – If no gradient is passed toGradientDescent.optimize
the gradient is approximated with a symmetric finite difference scheme withperturbation
perturbation in both directions (defaults to 1e-2 if required). Ignored if a gradient callable is passed toGradientDescent.optimize
.
-
__init__
(maxiter=100, learning_rate=0.01, tol=1e-07, callback=None, perturbation=None)[source]¶ - Parameters
maxiter (
int
) – The maximum number of iterations.learning_rate (
Union
[float
,Callable
[[],Iterator
]]) – A constant or generator yielding learning rates for the parameter updates. See the docstring for an example.tol (
float
) – If the norm of the parameter update is smaller than this threshold, the optimizer is converged.perturbation (
Optional
[float
]) – If no gradient is passed toGradientDescent.optimize
the gradient is approximated with a symmetric finite difference scheme withperturbation
perturbation in both directions (defaults to 1e-2 if required). Ignored if a gradient callable is passed toGradientDescent.optimize
.
Methods
__init__
([maxiter, learning_rate, tol, …])- type maxiter
int
Get the support level dictionary.
gradient_num_diff
(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
optimize
(num_vars, objective_function[, …])Perform optimization.
Print algorithm-specific options.
set_max_evals_grouped
(limit)Set max evals grouped
set_options
(**kwargs)Sets or updates values in the options dictionary.
wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
The optimizer settings in a dictionary format.
-
property
bounds_support_level
¶ Returns bounds support level
-
static
gradient_num_diff
(x_center, f, epsilon, max_evals_grouped=1)¶ We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters
x_center (ndarray) – point around which we compute the gradient
f (func) – the function of which the gradient is to be computed.
epsilon (float) – the epsilon used in the numeric differentiation.
max_evals_grouped (int) – max evals grouped
- Returns
the gradient computed
- Return type
grad
-
property
gradient_support_level
¶ Returns gradient support level
-
property
initial_point_support_level
¶ Returns initial point support level
-
property
is_bounds_ignored
¶ Returns is bounds ignored
-
property
is_bounds_required
¶ Returns is bounds required
-
property
is_bounds_supported
¶ Returns is bounds supported
-
property
is_gradient_ignored
¶ Returns is gradient ignored
-
property
is_gradient_required
¶ Returns is gradient required
-
property
is_gradient_supported
¶ Returns is gradient supported
-
property
is_initial_point_ignored
¶ Returns is initial point ignored
-
property
is_initial_point_required
¶ Returns is initial point required
-
property
is_initial_point_supported
¶ Returns is initial point supported
-
optimize
(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]¶ Perform optimization.
- Parameters
num_vars (int) – Number of parameters to be optimized.
objective_function (callable) – A function that computes the objective function.
gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
initial_point (numpy.ndarray[float]) – Initial point.
- Returns
- point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
- Raises
ValueError – invalid input
-
print_options
()¶ Print algorithm-specific options.
-
set_max_evals_grouped
(limit)¶ Set max evals grouped
-
set_options
(**kwargs)¶ Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters
kwargs (dict) – options, given as name=value.
-
property
setting
¶ Return setting
-
property
settings
¶ The optimizer settings in a dictionary format.
The settings can for instance be used for JSON-serialization (if all settings are serializable, which e.g. doesn’t hold per default for callables), such that the optimizer object can be reconstructed as
settings = optimizer.settings # JSON serialize and send to another server optimizer = OptimizerClass(**settings)
- Return type
Dict
[str
,Any
]
-
static
wrap_function
(function, args)¶ Wrap the function to implicitly inject the args at the call of the function.
- Parameters
function (func) – the target function
args (tuple) – the args to be injected
- Returns
wrapper
- Return type
function_wrapper