Source code for qiskit.transpiler.preset_passmanagers.level3
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Pass manager for optimization level 3, providing heavy optimization.
Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
gate cancellation using commutativity rules and unitary synthesis.
"""
from qiskit.transpiler.passmanager_config import PassManagerConfig
from qiskit.transpiler.timing_constraints import TimingConstraints
from qiskit.transpiler.passmanager import PassManager
from qiskit.transpiler.passes import Unroller
from qiskit.transpiler.passes import BasisTranslator
from qiskit.transpiler.passes import UnrollCustomDefinitions
from qiskit.transpiler.passes import Unroll3qOrMore
from qiskit.transpiler.passes import CheckMap
from qiskit.transpiler.passes import GateDirection
from qiskit.transpiler.passes import SetLayout
from qiskit.transpiler.passes import CSPLayout
from qiskit.transpiler.passes import TrivialLayout
from qiskit.transpiler.passes import DenseLayout
from qiskit.transpiler.passes import NoiseAdaptiveLayout
from qiskit.transpiler.passes import SabreLayout
from qiskit.transpiler.passes import BarrierBeforeFinalMeasurements
from qiskit.transpiler.passes import BasicSwap
from qiskit.transpiler.passes import LookaheadSwap
from qiskit.transpiler.passes import StochasticSwap
from qiskit.transpiler.passes import SabreSwap
from qiskit.transpiler.passes import FullAncillaAllocation
from qiskit.transpiler.passes import EnlargeWithAncilla
from qiskit.transpiler.passes import FixedPoint
from qiskit.transpiler.passes import Depth
from qiskit.transpiler.passes import RemoveResetInZeroState
from qiskit.transpiler.passes import Optimize1qGatesDecomposition
from qiskit.transpiler.passes import CommutativeCancellation
from qiskit.transpiler.passes import OptimizeSwapBeforeMeasure
from qiskit.transpiler.passes import RemoveDiagonalGatesBeforeMeasure
from qiskit.transpiler.passes import Collect2qBlocks
from qiskit.transpiler.passes import ConsolidateBlocks
from qiskit.transpiler.passes import UnitarySynthesis
from qiskit.transpiler.passes import ApplyLayout
from qiskit.transpiler.passes import Layout2qDistance
from qiskit.transpiler.passes import CheckGateDirection
from qiskit.transpiler.passes import TimeUnitConversion
from qiskit.transpiler.passes import ALAPSchedule
from qiskit.transpiler.passes import ASAPSchedule
from qiskit.transpiler.passes import AlignMeasures
from qiskit.transpiler.passes import ValidatePulseGates
from qiskit.transpiler.passes import Error
from qiskit.transpiler import TranspilerError
[docs]def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
"""Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
gate cancellation using commutativity rules and unitary synthesis.
This pass manager applies the user-given initial layout. If none is given, a search
for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
If no such layout is found, and device calibration information is available, the
circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.
The pass manager then transforms the circuit to match the coupling constraints.
It is then unrolled to the basis, and any flipped cx directions are fixed.
Finally, optimizations in the form of commutative gate cancellation, resynthesis
of two-qubit unitary blocks, and redundant reset removal are performed.
Note:
In simulators where ``coupling_map=None``, only the unrolling and
optimization stages are done.
Args:
pass_manager_config: configuration of the pass manager.
Returns:
a level 3 pass manager.
Raises:
TranspilerError: if the passmanager config is invalid.
"""
basis_gates = pass_manager_config.basis_gates
coupling_map = pass_manager_config.coupling_map
initial_layout = pass_manager_config.initial_layout
layout_method = pass_manager_config.layout_method or "dense"
routing_method = pass_manager_config.routing_method or "stochastic"
translation_method = pass_manager_config.translation_method or "translator"
scheduling_method = pass_manager_config.scheduling_method
instruction_durations = pass_manager_config.instruction_durations
seed_transpiler = pass_manager_config.seed_transpiler
backend_properties = pass_manager_config.backend_properties
approximation_degree = pass_manager_config.approximation_degree
timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
# 1. Unroll to 1q or 2q gates
_unroll3q = Unroll3qOrMore()
# 2. Layout on good qubits if calibration info available, otherwise on dense links
_given_layout = SetLayout(initial_layout)
def _choose_layout_condition(property_set):
# layout hasn't been set yet
return not property_set["layout"]
def _csp_not_found_match(property_set):
# If a layout hasn't been set by the time we run csp we need to run layout
if property_set["layout"] is None:
return True
# if CSP layout stopped for any reason other than solution found we need
# to run layout since CSP didn't converge.
if (
property_set["CSPLayout_stop_reason"] is not None
and property_set["CSPLayout_stop_reason"] != "solution found"
):
return True
return False
# 2a. If layout method is not set, first try a trivial layout
_choose_layout_0 = (
[]
if pass_manager_config.layout_method
else [
TrivialLayout(coupling_map),
Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
]
)
# 2b. If trivial layout wasn't perfect (ie no swaps are needed) then try
# using CSP layout to find a perfect layout
_choose_layout_1 = (
[]
if pass_manager_config.layout_method
else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
)
def _trivial_not_perfect(property_set):
# Verify that a trivial layout is perfect. If trivial_layout_score > 0
# the layout is not perfect. The layout property set is unconditionally
# set by trivial layout so we clear that before running CSP
if property_set["trivial_layout_score"] is not None:
if property_set["trivial_layout_score"] != 0:
property_set["layout"]._wrapped = None
return True
return False
# 2c. if CSP didn't converge on a solution use layout_method (dense).
if layout_method == "trivial":
_choose_layout_2 = TrivialLayout(coupling_map)
elif layout_method == "dense":
_choose_layout_2 = DenseLayout(coupling_map, backend_properties)
elif layout_method == "noise_adaptive":
_choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
elif layout_method == "sabre":
_choose_layout_2 = SabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler)
else:
raise TranspilerError("Invalid layout method %s." % layout_method)
# 3. Extend dag/layout with ancillas using the full coupling map
_embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]
# 4. Swap to fit the coupling map
_swap_check = CheckMap(coupling_map)
def _swap_condition(property_set):
return not property_set["is_swap_mapped"]
_swap = [BarrierBeforeFinalMeasurements()]
if routing_method == "basic":
_swap += [BasicSwap(coupling_map)]
elif routing_method == "stochastic":
_swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
elif routing_method == "lookahead":
_swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
elif routing_method == "sabre":
_swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
elif routing_method == "none":
_swap += [
Error(
msg="No routing method selected, but circuit is not routed to device. "
"CheckMap Error: {check_map_msg}",
action="raise",
)
]
else:
raise TranspilerError("Invalid routing method %s." % routing_method)
# 5. Unroll to the basis
if translation_method == "unroller":
_unroll = [Unroller(basis_gates)]
elif translation_method == "translator":
from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
_unroll = [UnrollCustomDefinitions(sel, basis_gates), BasisTranslator(sel, basis_gates)]
elif translation_method == "synthesis":
_unroll = [
Unroll3qOrMore(),
Collect2qBlocks(),
ConsolidateBlocks(basis_gates=basis_gates),
UnitarySynthesis(
basis_gates,
approximation_degree=approximation_degree,
coupling_map=coupling_map,
backend_props=backend_properties,
),
]
else:
raise TranspilerError("Invalid translation method %s." % translation_method)
# 6. Fix any CX direction mismatch
_direction_check = [CheckGateDirection(coupling_map)]
def _direction_condition(property_set):
return not property_set["is_direction_mapped"]
_direction = [GateDirection(coupling_map)]
# 8. Optimize iteratively until no more change in depth. Removes useless gates
# after reset and before measure, commutes gates and optimizes contiguous blocks.
_depth_check = [Depth(), FixedPoint("depth")]
def _opt_control(property_set):
return not property_set["depth_fixed_point"]
_reset = [RemoveResetInZeroState()]
_meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]
_opt = [
Collect2qBlocks(),
ConsolidateBlocks(basis_gates=basis_gates),
UnitarySynthesis(
basis_gates,
approximation_degree=approximation_degree,
coupling_map=coupling_map,
backend_props=backend_properties,
),
Optimize1qGatesDecomposition(basis_gates),
CommutativeCancellation(),
]
# 9. Unify all durations (either SI, or convert to dt if known)
# Schedule the circuit only when scheduling_method is supplied
_scheduling = [TimeUnitConversion(instruction_durations)]
if scheduling_method:
if scheduling_method in {"alap", "as_late_as_possible"}:
_scheduling += [ALAPSchedule(instruction_durations)]
elif scheduling_method in {"asap", "as_soon_as_possible"}:
_scheduling += [ASAPSchedule(instruction_durations)]
else:
raise TranspilerError("Invalid scheduling method %s." % scheduling_method)
# 10. Call measure alignment. Should come after scheduling.
_alignments = [
ValidatePulseGates(
granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
),
AlignMeasures(alignment=timing_constraints.acquire_alignment),
]
# Build pass manager
pm3 = PassManager()
pm3.append(_unroll3q)
pm3.append(_reset + _meas)
if coupling_map or initial_layout:
pm3.append(_given_layout)
pm3.append(_choose_layout_0, condition=_choose_layout_condition)
pm3.append(_choose_layout_1, condition=_trivial_not_perfect)
pm3.append(_choose_layout_2, condition=_csp_not_found_match)
pm3.append(_embed)
pm3.append(_swap_check)
pm3.append(_swap, condition=_swap_condition)
pm3.append(_unroll)
if coupling_map and not coupling_map.is_symmetric:
pm3.append(_direction_check)
pm3.append(_direction, condition=_direction_condition)
pm3.append(_reset)
pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
pm3.append(_scheduling)
pm3.append(_alignments)
return pm3