Source code for qiskit.quantum_info.states.stabilizerstate
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Stabilizer state class.
"""
import numpy as np
from qiskit.exceptions import QiskitError
from qiskit.quantum_info.states.quantum_state import QuantumState
from qiskit.quantum_info.operators.op_shape import OpShape
from qiskit.quantum_info.operators.symplectic import Clifford, Pauli
from qiskit.quantum_info.operators.symplectic.clifford_circuits import _append_x
[docs]class StabilizerState(QuantumState):
"""StabilizerState class.
Stabilizer simulator using the convention from reference [1].
Based on the internal class :class:`~qiskit.quantum_info.Clifford`.
.. jupyter-execute::
from qiskit import QuantumCircuit
from qiskit.quantum_info import StabilizerState, Pauli
# Bell state generation circuit
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
stab = StabilizerState(qc)
# Print the StabilizerState
print(stab)
# Calculate the StabilizerState measurement probabilities dictionary
print (stab.probabilities_dict())
# Calculate expectation value of the StabilizerState
print (stab.expectation_value(Pauli('ZZ')))
References:
1. S. Aaronson, D. Gottesman, *Improved Simulation of Stabilizer Circuits*,
Phys. Rev. A 70, 052328 (2004).
`arXiv:quant-ph/0406196 <https://arxiv.org/abs/quant-ph/0406196>`_
"""
[docs] def __init__(self, data, validate=True):
"""Initialize a StabilizerState object.
Args:
data (StabilizerState or Clifford or Pauli or QuantumCircuit or
qiskit.circuit.Instruction):
Data from which the stabilizer state can be constructed.
validate (boolean): validate that the stabilizer state data is
a valid Clifford.
"""
# Initialize from another StabilizerState
if isinstance(data, StabilizerState):
self._data = data._data
# Initialize from a Pauli
elif isinstance(data, Pauli):
self._data = Clifford(data.to_instruction())
# Initialize from a Clifford, QuantumCircuit or Instruction
else:
self._data = Clifford(data, validate)
# Initialize
super().__init__(op_shape=OpShape.auto(num_qubits_r=self._data.num_qubits, num_qubits_l=0))
def __eq__(self, other):
return self._data.stabilizer == other._data.stabilizer
def __repr__(self):
return f"StabilizerState({self._data.stabilizer})"
@property
def clifford(self):
"""Return StabilizerState Clifford data"""
return self._data
[docs] def is_valid(self, atol=None, rtol=None):
"""Return True if a valid StabilizerState."""
return self._data.is_unitary()
def _add(self, other):
raise NotImplementedError(f"{type(self)} does not support addition")
def _multiply(self, other):
raise NotImplementedError(f"{type(self)} does not support scalar multiplication")
[docs] def trace(self):
"""Return the trace of the stabilizer state as a density matrix,
which equals to 1, since it is always a pure state.
Returns:
double: the trace (should equal 1).
Raises:
QiskitError: if input is not a StabilizerState.
"""
if not self.is_valid():
raise QiskitError("StabilizerState is not a valid quantum state.")
return 1.0
[docs] def purity(self):
"""Return the purity of the quantum state,
which equals to 1, since it is always a pure state.
Returns:
double: the purity (should equal 1).
Raises:
QiskitError: if input is not a StabilizerState.
"""
if not self.is_valid():
raise QiskitError("StabilizerState is not a valid quantum state.")
return 1.0
[docs] def to_operator(self):
"""Convert state to matrix operator class"""
return Clifford(self.clifford).to_operator()
[docs] def conjugate(self):
"""Return the conjugate of the operator."""
ret = self.copy()
ret._data = ret._data.conjugate()
return ret
[docs] def tensor(self, other):
"""Return the tensor product stabilzier state self ⊗ other.
Args:
other (StabilizerState): a stabilizer state object.
Returns:
StabilizerState: the tensor product operator self ⊗ other.
Raises:
QiskitError: if other is not a StabilizerState.
"""
if not isinstance(other, StabilizerState):
other = StabilizerState(other)
ret = self.copy()
ret._data = self.clifford.tensor(other.clifford)
return ret
[docs] def expand(self, other):
"""Return the tensor product stabilzier state other ⊗ self.
Args:
other (StabilizerState): a stabilizer state object.
Returns:
StabilizerState: the tensor product operator other ⊗ self.
Raises:
QiskitError: if other is not a StabilizerState.
"""
if not isinstance(other, StabilizerState):
other = StabilizerState(other)
ret = self.copy()
ret._data = self.clifford.expand(other.clifford)
return ret
[docs] def evolve(self, other, qargs=None):
"""Evolve a stabilizer state by a Clifford operator.
Args:
other (Clifford or QuantumCircuit or qiskit.circuit.Instruction):
The Clifford operator to evolve by.
qargs (list): a list of stabilizer subsystem positions to apply the operator on.
Returns:
StabilizerState: the output stabilizer state.
Raises:
QiskitError: if other is not a StabilizerState.
QiskitError: if the operator dimension does not match the
specified StabilizerState subsystem dimensions.
"""
if not isinstance(other, StabilizerState):
other = StabilizerState(other)
ret = self.copy()
ret._data = self.clifford.compose(other.clifford, qargs=qargs)
return ret
[docs] def expectation_value(self, oper, qargs=None):
"""Compute the expectation value of an operator.
Args:
oper (BaseOperator): an operator to evaluate expval.
qargs (None or list): subsystems to apply the operator on.
Returns:
complex: the expectation value (only 0 or 1 or -1).
"""
num_qubits = self.clifford.num_qubits
if qargs is None:
qubits = range(num_qubits)
else:
qubits = qargs
# Construct Pauli on num_qubits
pauli = Pauli(num_qubits * "I")
phase = 0
for pos, qubit in enumerate(qubits):
pauli_pos = (oper.to_label())[len(oper) - 1 - pos]
if pauli_pos == "X":
pauli.x[qubit] = 1
elif pauli_pos == "Y":
pauli.x[qubit] = 1
pauli.z[qubit] = 1
phase += 1
elif pauli_pos == "Z":
pauli.z[qubit] = 1
else:
pass
# Check if there is a stabilizer that anti-commutes with an odd number of qubits
# If so the expectation value is 0
for p in range(num_qubits):
stab = self.clifford.stabilizer
num_anti = 0
num_anti += np.count_nonzero(pauli.z & stab.X[p])
num_anti += np.count_nonzero(pauli.x & stab.Z[p])
if num_anti % 2 == 1:
return 0
# Otherwise pauli is (-1)^a prod_j S_j^b_j for Clifford stabilizers
# If pauli anti-commutes with D_j then b_j = 1.
# Multiply pauli by stabilizers with anti-commuting destabilizers
pauli_z = (pauli.z).copy() # Make a copy of pauli.z
for p in range(num_qubits):
# Check if destabilizer anti-commutes
destab = self.clifford.destabilizer
num_anti = 0
num_anti += np.count_nonzero(pauli.z & destab.X[p])
num_anti += np.count_nonzero(pauli.x & destab.Z[p])
if num_anti % 2 == 0:
continue
# If anti-commutes multiply Pauli by stabilizer
stab = self.clifford.stabilizer
phase += 2 * self.clifford.table.phase[p + num_qubits]
phase += np.count_nonzero(stab.Z[p] & stab.X[p])
phase += 2 * np.count_nonzero(pauli_z & stab.X[p])
pauli_z = pauli_z ^ stab.Z[p]
if phase % 4 != 0:
return -1
return 1
[docs] def probabilities(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability vector.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
np.array: The Numpy vector array of probabilities.
"""
probs_dict = self.probabilities_dict(qargs, decimals)
if qargs is None:
qargs = range(self.clifford.num_qubits)
probs = np.zeros(2 ** len(qargs))
for key, value in probs_dict.items():
place = int(key, 2)
probs[place] = value
return probs
[docs] def probabilities_dict(self, qargs=None, decimals=None):
"""Return the subsystem measurement probability dictionary.
Measurement probabilities are with respect to measurement in the
computation (diagonal) basis.
This dictionary representation uses a Ket-like notation where the
dictionary keys are qudit strings for the subsystem basis vectors.
If any subsystem has a dimension greater than 10 comma delimiters are
inserted between integers so that subsystems can be distinguished.
Args:
qargs (None or list): subsystems to return probabilities for,
if None return for all subsystems (Default: None).
decimals (None or int): the number of decimal places to round
values. If None no rounding is done (Default: None).
Returns:
dict: The measurement probabilities in dict (ket) form.
"""
if qargs is None:
qubits = range(self.clifford.num_qubits)
else:
qubits = qargs
outcome = ["X"] * len(qubits)
outcome_prob = 1.0
probs = {} # probabilities dictionary
self._get_probablities(qubits, outcome, outcome_prob, probs)
if decimals is not None:
for key, value in probs.items():
probs[key] = round(value, decimals)
return probs
[docs] def reset(self, qargs=None):
"""Reset state or subsystems to the 0-state.
Args:
qargs (list or None): subsystems to reset, if None all
subsystems will be reset to their 0-state
(Default: None).
Returns:
StabilizerState: the reset state.
Additional Information:
If all subsystems are reset this will return the ground state
on all subsystems. If only some subsystems are reset this
function will perform a measurement on those subsystems and
evolve the subsystems so that the collapsed post-measurement
states are rotated to the 0-state. The RNG seed for this
sampling can be set using the :meth:`seed` method.
"""
# Resetting all qubits does not require sampling or RNG
if qargs is None:
return StabilizerState(Clifford(np.eye(2 * self.clifford.num_qubits)))
randbits = self._rng.integers(2, size=len(qargs))
ret = self.copy()
for bit, qubit in enumerate(qargs):
# Apply measurement and get classical outcome
outcome = ret._measure_and_update(qubit, randbits[bit])
# Use the outcome to apply X gate to any qubits left in the
# |1> state after measure, then discard outcome.
if outcome == 1:
_append_x(ret.clifford, qubit)
return ret
[docs] def measure(self, qargs=None):
"""Measure subsystems and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random
number generator for sampling the measurement outcome. The RNG
seed can be set using the :meth:`seed` method.
Args:
qargs (list or None): subsystems to sample measurements for,
if None sample measurement of all
subsystems (Default: None).
Returns:
tuple: the pair ``(outcome, state)`` where ``outcome`` is the
measurement outcome string label, and ``state`` is the
collapsed post-measurement stabilizer state for the
corresponding outcome.
"""
if qargs is None:
qargs = range(self.clifford.num_qubits)
randbits = self._rng.integers(2, size=len(qargs))
ret = self.copy()
outcome = ""
for bit, qubit in enumerate(qargs):
outcome = str(ret._measure_and_update(qubit, randbits[bit])) + outcome
return outcome, ret
[docs] def sample_memory(self, shots, qargs=None):
"""Sample a list of qubit measurement outcomes in the computational basis.
Args:
shots (int): number of samples to generate.
qargs (None or list): subsystems to sample measurements for,
if None sample measurement of all
subsystems (Default: None).
Returns:
np.array: list of sampled counts if the order sampled.
Additional Information:
This function implements the measurement :meth:`measure` method.
The seed for random number generator used for sampling can be
set to a fixed value by using the stats :meth:`seed` method.
"""
memory = []
for _ in range(shots):
# copy the StabilizerState since measure updates it
stab = self.copy()
memory.append(stab.measure(qargs)[0])
return memory
# -----------------------------------------------------------------------
# Helper functions for calculating the measurement
# -----------------------------------------------------------------------
def _measure_and_update(self, qubit, randbit):
"""Measure a single qubit and return outcome and post-measure state.
Note that this function uses the QuantumStates internal random
number generator for sampling the measurement outcome. The RNG
seed can be set using the :meth:`seed` method.
Note that stabilizer state measurements only have three probabilities:
(p0, p1) = (0.5, 0.5), (1, 0), or (0, 1)
The random case happens if there is a row anti-commuting with Z[qubit]
"""
num_qubits = self.clifford.num_qubits
table = self.clifford.table
stab_x = self.clifford.stabilizer.X
# Check if there exists stabilizer anticommuting with Z[qubit]
# in this case the measurement outcome is random
z_anticommuting = np.any(stab_x[:, qubit])
if z_anticommuting == 0:
# Deterministic outcome - measuring it will not change the StabilizerState
aux_pauli = Pauli(num_qubits * "I")
for i in range(num_qubits):
if table.X[i][qubit]:
aux_pauli = self._rowsum_deterministic(table, aux_pauli, i + num_qubits)
outcome = aux_pauli.phase
return outcome
else:
# Non-deterministic outcome
outcome = randbit
p_qubit = np.min(np.nonzero(stab_x[:, qubit]))
p_qubit += num_qubits
# Updating the StabilizerState
for i in range(2 * num_qubits):
# the last condition is not in the AG paper but we seem to need it
if (table.X[i][qubit]) and (i != p_qubit) and (i != (p_qubit - num_qubits)):
self._rowsum_nondeterministic(table, i, p_qubit)
table[p_qubit - num_qubits] = table[p_qubit].copy()
table.X[p_qubit] = np.zeros(num_qubits)
table.Z[p_qubit] = np.zeros(num_qubits)
table.Z[p_qubit][qubit] = True
table.phase[p_qubit] = outcome
return outcome
@staticmethod
def _phase_exponent(x1, z1, x2, z2):
"""Exponent g of i such that Pauli(x1,z1) * Pauli(x2,z2) = i^g Pauli(x1+x2,z1+z2)"""
# pylint: disable=invalid-name
phase = (x2 * z1 * (1 + 2 * z2 + 2 * x1) - x1 * z2 * (1 + 2 * z1 + 2 * x2)) % 4
if phase < 0:
phase += 4 # now phase in {0, 1, 3}
if phase == 2:
raise QiskitError("Invalid rowsum phase exponent in measurement calculation.")
return phase
@staticmethod
def _rowsum(accum_pauli, accum_phase, row_pauli, row_phase):
"""Aaronson-Gottesman rowsum helper function"""
newr = 2 * row_phase + 2 * accum_phase
for qubit in range(row_pauli.num_qubits):
newr += StabilizerState._phase_exponent(
row_pauli.x[qubit], row_pauli.z[qubit], accum_pauli.x[qubit], accum_pauli.z[qubit]
)
newr %= 4
if (newr != 0) & (newr != 2):
raise QiskitError("Invalid rowsum in measurement calculation.")
accum_phase = int(newr == 2)
accum_pauli.x ^= row_pauli.x
accum_pauli.z ^= row_pauli.z
return accum_pauli, accum_phase
@staticmethod
def _rowsum_nondeterministic(table, accum, row):
"""Updating StabilizerState Clifford table in the
non-deterministic rowsum calculation.
row and accum are rows in the StabilizerState Clifford table."""
row_phase = table.phase[row]
accum_phase = table.phase[accum]
row_pauli = table.pauli[row]
accum_pauli = table.pauli[accum]
row_pauli = Pauli(row_pauli.to_labels()[0])
accum_pauli = Pauli(accum_pauli.to_labels()[0])
accum_pauli, accum_phase = StabilizerState._rowsum(
accum_pauli, accum_phase, row_pauli, row_phase
)
table.phase[accum] = accum_phase
table.X[accum] = accum_pauli.x
table.Z[accum] = accum_pauli.z
@staticmethod
def _rowsum_deterministic(table, aux_pauli, row):
"""Updating an auxilary Pauli aux_pauli in the
deterministic rowsum calculation.
The StabilizerState itself is not updated."""
row_phase = table.phase[row]
accum_phase = aux_pauli.phase
accum_pauli = aux_pauli
row_pauli = table.pauli[row]
row_pauli = Pauli(row_pauli.to_labels()[0])
accum_pauli, accum_phase = StabilizerState._rowsum(
accum_pauli, accum_phase, row_pauli, row_phase
)
aux_pauli = accum_pauli
aux_pauli.phase = accum_phase
return aux_pauli
# -----------------------------------------------------------------------
# Helper functions for calculating the probabilities
# -----------------------------------------------------------------------
def _get_probablities(self, qubits, outcome, outcome_prob, probs):
"""Recursive helper function for calculating the probabilities"""
qubit_for_branching = -1
ret = self.copy()
for i in range(len(qubits)):
qubit = qubits[len(qubits) - i - 1]
if outcome[i] == "X":
is_deterministic = not any(ret.clifford.stabilizer.X[:, qubit])
if is_deterministic:
single_qubit_outcome = ret._measure_and_update(qubit, 0)
if single_qubit_outcome:
outcome[i] = "1"
else:
outcome[i] = "0"
else:
qubit_for_branching = i
if qubit_for_branching == -1:
str_outcome = "".join(outcome)
probs[str_outcome] = outcome_prob
return
for single_qubit_outcome in range(0, 2):
new_outcome = outcome.copy()
if single_qubit_outcome:
new_outcome[qubit_for_branching] = "1"
else:
new_outcome[qubit_for_branching] = "0"
stab_cpy = ret.copy()
stab_cpy._measure_and_update(
qubits[len(qubits) - qubit_for_branching - 1], single_qubit_outcome
)
stab_cpy._get_probablities(qubits, new_outcome, 0.5 * outcome_prob, probs)