qiskit.quantum_info.SuperOp¶
-
class
SuperOp
(data, input_dims=None, output_dims=None)[source]¶ Superoperator representation of a quantum channel.
The Superoperator representation of a quantum channel \(\mathcal{E}\) is a matrix \(S\) such that the evolution of a
DensityMatrix
\(\rho\) is given by\[|\mathcal{E}(\rho)\rangle\!\rangle = S |\rho\rangle\!\rangle\]where the double-ket notation \(|A\rangle\!\rangle\) denotes a vector formed by stacking the columns of the matrix \(A\) (column-vectorization).
See reference [1] for further details.
References
C.J. Wood, J.D. Biamonte, D.G. Cory, Tensor networks and graphical calculus for open quantum systems, Quant. Inf. Comp. 15, 0579-0811 (2015). arXiv:1111.6950 [quant-ph]
Initialize a quantum channel Superoperator operator.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a superoperator.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
-
__init__
(data, input_dims=None, output_dims=None)[source]¶ Initialize a quantum channel Superoperator operator.
- Parameters
(QuantumCircuit or (data) – Instruction or BaseOperator or matrix): data to initialize superoperator.
input_dims (tuple) – the input subsystem dimensions. [Default: None]
output_dims (tuple) – the output subsystem dimensions. [Default: None]
- Raises
QiskitError – if input data cannot be initialized as a superoperator.
- Additional Information:
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (4**N, 4**N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
Methods
__init__
(data[, input_dims, output_dims])Initialize a quantum channel Superoperator operator.
adjoint
()Return the adjoint quantum channel.
compose
(other[, qargs, front])Return the operator composition with another SuperOp.
Return the conjugate quantum channel.
copy
()Make a deep copy of current operator.
dot
(other[, qargs])Return the right multiplied operator self * other.
expand
(other)Return the reverse-order tensor product with another SuperOp.
input_dims
([qargs])Return tuple of input dimension for specified subsystems.
is_cp
([atol, rtol])Test if Choi-matrix is completely-positive (CP)
is_cptp
([atol, rtol])Return True if completely-positive trace-preserving (CPTP).
is_tp
([atol, rtol])Test if a channel is trace-preserving (TP)
is_unitary
([atol, rtol])Return True if QuantumChannel is a unitary channel.
output_dims
([qargs])Return tuple of output dimension for specified subsystems.
power
(n)Return the power of the quantum channel.
reshape
([input_dims, output_dims, num_qubits])Return a shallow copy with reshaped input and output subsystem dimensions.
tensor
(other)Return the tensor product with another SuperOp.
Convert to a Kraus or UnitaryGate circuit instruction.
Try to convert channel to a unitary representation Operator.
Return the transpose quantum channel.
Attributes
Default absolute tolerance parameter for float comparisons.
Return data.
Return tuple (input_shape, output_shape).
Return the number of qubits if a N-qubit operator or None otherwise.
Return the qargs for the operator.
Default relative tolerance parameter for float comparisons.
-
adjoint
()[source]¶ Return the adjoint quantum channel.
Note
This is equivalent to the matrix Hermitian conjugate in the
SuperOp
representation ie. for a channel \(\mathcal{E}\), the SuperOp of the adjoint channel \(\mathcal{{E}}^\dagger\) is \(S_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger\).
-
property
atol
¶ Default absolute tolerance parameter for float comparisons.
-
compose
(other, qargs=None, front=False)[source]¶ Return the operator composition with another SuperOp.
- Parameters
other (SuperOp) – a SuperOp object.
qargs (list or None) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
front (bool) – If True compose using right operator multiplication, instead of left multiplication [default: False].
- Returns
The composed SuperOp.
- Return type
- Raises
QiskitError – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
Note
Composition (
&
) by default is defined as left matrix multiplication for matrix operators, whiledot()
is defined as right matrix multiplication. That is thatA & B == A.compose(B)
is equivalent toB.dot(A)
whenA
andB
are of the same type.Setting the
front=True
kwarg changes this to right matrix multiplication and is equivalent to thedot()
methodA.dot(B) == A.compose(B, front=True)
.
-
conjugate
()[source]¶ Return the conjugate quantum channel.
Note
This is equivalent to the matrix complex conjugate in the
SuperOp
representation ie. for a channel \(\mathcal{E}\), the SuperOp of the conjugate channel \(\overline{{\mathcal{{E}}}}\) is \(S_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}\).
-
copy
()¶ Make a deep copy of current operator.
-
property
data
¶ Return data.
-
property
dim
¶ Return tuple (input_shape, output_shape).
-
dot
(other, qargs=None)¶ Return the right multiplied operator self * other.
-
input_dims
(qargs=None)¶ Return tuple of input dimension for specified subsystems.
-
is_cp
(atol=None, rtol=None)¶ Test if Choi-matrix is completely-positive (CP)
-
is_cptp
(atol=None, rtol=None)¶ Return True if completely-positive trace-preserving (CPTP).
-
is_tp
(atol=None, rtol=None)¶ Test if a channel is trace-preserving (TP)
-
is_unitary
(atol=None, rtol=None)¶ Return True if QuantumChannel is a unitary channel.
-
property
num_qubits
¶ Return the number of qubits if a N-qubit operator or None otherwise.
-
output_dims
(qargs=None)¶ Return tuple of output dimension for specified subsystems.
-
power
(n)¶ Return the power of the quantum channel.
- Parameters
n (float) – the power exponent.
- Returns
the channel \(\mathcal{{E}} ^n\).
- Return type
- Raises
QiskitError – if the input and output dimensions of the SuperOp are not equal.
Note
For non-positive or non-integer exponents the power is defined as the matrix power of the
SuperOp
representation ie. for a channel \(\mathcal{{E}}\), the SuperOp of the powered channel \(\mathcal{{E}}^\n\) is \(S_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n\).
-
property
qargs
¶ Return the qargs for the operator.
-
reshape
(input_dims=None, output_dims=None, num_qubits=None)¶ Return a shallow copy with reshaped input and output subsystem dimensions.
- Parameters
input_dims (None or tuple) – new subsystem input dimensions. If None the original input dims will be preserved [Default: None].
output_dims (None or tuple) – new subsystem output dimensions. If None the original output dims will be preserved [Default: None].
num_qubits (None or int) – reshape to an N-qubit operator [Default: None].
- Returns
returns self with reshaped input and output dimensions.
- Return type
BaseOperator
- Raises
QiskitError – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
-
property
rtol
¶ Default relative tolerance parameter for float comparisons.
-
tensor
(other)[source]¶ Return the tensor product with another SuperOp.
- Parameters
other (SuperOp) – a SuperOp object.
- Returns
- the tensor product \(a \otimes b\), where \(a\)
is the current SuperOp, and \(b\) is the other SuperOp.
- Return type
Note
The tensor product can be obtained using the
^
binary operator. Hencea.tensor(b)
is equivalent toa ^ b
.
-
to_instruction
()¶ Convert to a Kraus or UnitaryGate circuit instruction.
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
- Returns
A kraus instruction for the channel.
- Return type
- Raises
QiskitError – if input data is not an N-qubit CPTP quantum channel.
-
to_operator
()¶ Try to convert channel to a unitary representation Operator.