qiskit.opflow.gradients.NaturalGradient¶
-
class
NaturalGradient
(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)[source]¶ Convert an operator expression to the first-order gradient.
Given an ill-posed inverse problem
x = arg min{||Ax-C||^2} (1)
one can use regularization schemes can be used to stabilize the system and find a numerical solution
x_lambda = arg min{||Ax-C||^2 + lambda*R(x)} (2)
where R(x) represents the penalization term.
- Parameters
grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
.qfi_method (
Union
[str
,CircuitQFI
]) – The method used to compute the QFI. Can be either'lin_comb_full'
or'overlap_block_diag'
or'overlap_diag'
.regularization (
Optional
[str
]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or'ridge'
or'lasso'
or'perturb_diag'
'ridge'
and'lasso'
use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularizationkwargs (dict) – Optional parameters for a CircuitGradient
-
__init__
(grad_method='lin_comb', qfi_method='lin_comb_full', regularization=None, **kwargs)[source]¶ - Parameters
grad_method (
Union
[str
,CircuitGradient
]) – The method used to compute the state gradient. Can be either'param_shift'
or'lin_comb'
or'fin_diff'
.qfi_method (
Union
[str
,CircuitQFI
]) – The method used to compute the QFI. Can be either'lin_comb_full'
or'overlap_block_diag'
or'overlap_diag'
.regularization (
Optional
[str
]) – Use the following regularization with a least square method to solve the underlying system of linear equations Can be either None or'ridge'
or'lasso'
or'perturb_diag'
'ridge'
and'lasso'
use an automatic optimal parameter search If regularization is None but the metric is ill-conditioned or singular then a least square solver is used without regularizationkwargs (dict) – Optional parameters for a CircuitGradient
Methods
__init__
([grad_method, qfi_method, …])- type grad_method
Union
[str
,CircuitGradient
]
convert
(operator[, params])- type operator
OperatorBase
gradient_wrapper
(operator, bind_params[, …])Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values.
parameter_expression_grad
(param_expr, param)Get the derivative of a parameter expression w.r.t.
Attributes
Returns
CircuitGradient
.Returns
CircuitQFI
.Returns the regularization option.
-
convert
(operator, params=None)[source]¶ - Parameters
operator (
OperatorBase
) – The operator we are taking the gradient of.params (
Union
[ParameterVector
,ParameterExpression
,List
[ParameterExpression
],None
]) – The parameters we are taking the gradient with respect to. If not explicitly passed, they are inferred from the operator and sorted by name.
- Return type
OperatorBase
- Returns
An operator whose evaluation yields the NaturalGradient.
- Raises
TypeError – If
operator
does not represent an expectation value or the quantum state is notCircuitStateFn
.ValueError – If
params
contains a parameter not present inoperator
.ValueError – If
operator
is not parameterized.
-
property
grad_method
¶ Returns
CircuitGradient
.- Return type
CircuitGradient
- Returns
CircuitGradient
.
-
gradient_wrapper
(operator, bind_params, grad_params=None, backend=None)¶ Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
- Parameters
operator (
OperatorBase
) – The operator for which we want to get the gradient, Hessian or QFI.bind_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
]]) – The operator parameters to which the parameter values are assigned.grad_params (
Union
[ParameterExpression
,ParameterVector
,List
[ParameterExpression
],Tuple
[ParameterExpression
,ParameterExpression
],List
[Tuple
[ParameterExpression
,ParameterExpression
]],None
]) – The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad_params = None, then grad_params = bind_paramsbackend (
Union
[BaseBackend
,QuantumInstance
,None
]) – The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
- Returns
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
- Return type
callable(param_values)
-
static
parameter_expression_grad
(param_expr, param)¶ Get the derivative of a parameter expression w.r.t. the given parameter.
- Parameters
param_expr (
ParameterExpression
) – The Parameter Expression for which we compute the derivativeparam (
ParameterExpression
) – Parameter w.r.t. which we want to take the derivative
- Return type
Union
[ParameterExpression
,float
]- Returns
ParameterExpression representing the gradient of param_expr w.r.t. param
-
property
qfi_method
¶ Returns
CircuitQFI
.Returns:
CircuitQFI
- Return type
CircuitQFI
-
property
regularization
¶ Returns the regularization option.
Returns: the regularization option.
- Return type
Optional
[str
]