qiskit.aqua.components.neural_networks.QuantumGenerator¶
-
class
QuantumGenerator
(bounds, num_qubits, generator_circuit=None, init_params=None, optimizer=None, gradient_function=None, snapshot_dir=None)[source]¶ Quantum Generator.
The quantum generator is a parametrized quantum circuit which can be trained with the
QGAN
algorithm to generate a quantum state which approximates the probability distribution of given training data. At the beginning of the training the parameters will be set randomly, thus, the output will is random. Throughout the training the quantum generator learns to represent the target distribution. Eventually, the trained generator can be used for state preparation e.g. in QAE.- Parameters
bounds (
ndarray
) – k min/max data values [[min_1,max_1],…,[min_k,max_k]], given input data dim knum_qubits (
Union
[List
[int
],ndarray
]) – k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,…, n_k]generator_circuit (
Union
[UnivariateVariationalDistribution
,MultivariateVariationalDistribution
,QuantumCircuit
,None
]) – a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator.init_params (
Union
[List
[float
],ndarray
,None
]) – 1D numpy array or list, Initialization for the generator’s parameters.optimizer (
Optional
[Optimizer
]) – optimizer to be used for the training of the generatorgradient_function (
Union
[Callable
,Gradient
,None
]) – A Gradient object, or a function returning partial derivatives of the loss function w.r.t. the generator variational params.snapshot_dir (
Optional
[str
]) – str or None, if not None save the optimizer’s parameter after every update step to the given directory
- Raises
AquaError – Set multivariate variational distribution to represent multivariate data
-
__init__
(bounds, num_qubits, generator_circuit=None, init_params=None, optimizer=None, gradient_function=None, snapshot_dir=None)[source]¶ - Parameters
bounds (
ndarray
) – k min/max data values [[min_1,max_1],…,[min_k,max_k]], given input data dim knum_qubits (
Union
[List
[int
],ndarray
]) – k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,…, n_k]generator_circuit (
Union
[UnivariateVariationalDistribution
,MultivariateVariationalDistribution
,QuantumCircuit
,None
]) – a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator.init_params (
Union
[List
[float
],ndarray
,None
]) – 1D numpy array or list, Initialization for the generator’s parameters.optimizer (
Optional
[Optimizer
]) – optimizer to be used for the training of the generatorgradient_function (
Union
[Callable
,Gradient
,None
]) – A Gradient object, or a function returning partial derivatives of the loss function w.r.t. the generator variational params.snapshot_dir (
Optional
[str
]) – str or None, if not None save the optimizer’s parameter after every update step to the given directory
- Raises
AquaError – Set multivariate variational distribution to represent multivariate data
Methods
__init__
(bounds, num_qubits[, …])- type bounds
ndarray
construct_circuit
([params])Construct generator circuit.
get_output
(quantum_instance[, params, shots])Get classical data samples from the generator.
loss
(x, weights)Loss function for training the generator’s parameters.
set_discriminator
(discriminator)Set discriminator network.
set_seed
(seed)Set seed.
train
([quantum_instance, shots])Perform one training step w.r.t to the generator’s parameters
Attributes
Get discriminator.
Get optimizer.
Get parameter values from the quantum generator
Get seed.
-
construct_circuit
(params=None)[source]¶ Construct generator circuit.
- Parameters
params (list | dict) – parameters which should be used to run the generator.
- Returns
construct the quantum circuit and return as gate
- Return type
-
property
discriminator
¶ Get discriminator.
- Return type
DiscriminativeNetwork
-
get_output
(quantum_instance, params=None, shots=None)[source]¶ Get classical data samples from the generator. Running the quantum generator circuit results in a quantum state. To train this generator with a classical discriminator, we need to sample classical outputs by measuring the quantum state and mapping them to feature space defined by the training data.
- Parameters
quantum_instance (QuantumInstance) – Quantum Instance, used to run the generator circuit.
params (numpy.ndarray) – array or None, parameters which should be used to run the generator, if None use self._params
shots (int) – if not None use a number of shots that is different from the number set in quantum_instance
- Returns
generated samples, array: sample occurrence in percentage
- Return type
list
-
loss
(x, weights)[source]¶ Loss function for training the generator’s parameters.
- Parameters
x (numpy.ndarray) – sample label (equivalent to discriminator output)
weights (numpy.ndarray) – probability for measuring the sample
- Returns
loss function
- Return type
float
-
property
optimizer
¶ Get optimizer.
- Return type
Optimizer
-
property
parameter_values
¶ Get parameter values from the quantum generator
- Return type
Union
[List
,ndarray
]- Returns
Current parameter values
-
property
seed
¶ Get seed.
- Return type
int
-
set_discriminator
(discriminator)[source]¶ Set discriminator network.
- Parameters
discriminator (DiscriminativeNetwork) – Discriminator used to compute the loss function.
- Return type
None
-
train
(quantum_instance=None, shots=None)[source]¶ Perform one training step w.r.t to the generator’s parameters
- Parameters
quantum_instance (QuantumInstance) – used to run the generator circuit.
shots (int) – Number of shots for hardware or qasm execution.
- Returns
generator loss(float) and updated parameters (array).
- Return type
dict