qiskit.algorithms.optimizers.P_BFGS¶
-
class
P_BFGS
(maxfun=1000, factr=10, iprint=- 1, max_processes=None)[source]¶ Parallelized Limited-memory BFGS optimizer.
P-BFGS is a parallelized version of
L_BFGS_B
with which it shares the same parameters. P-BFGS can be useful when the target hardware is a quantum simulator running on a classical machine. This allows the multiple processes to use simulation to potentially reach a minimum faster. The parallelization may also help the optimizer avoid getting stuck at local optima.Uses scipy.optimize.fmin_l_bfgs_b. For further detail, please refer to https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
- Parameters
maxfun (
int
) – Maximum number of function evaluations.factr (
float
) – The iteration stops when (f^k - f^{k+1})/max{|f^k|, |f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.iprint (
int
) – Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.max_processes (
Optional
[int
]) – maximum number of processes allowed, has a min. value of 1 if not None.
-
__init__
(maxfun=1000, factr=10, iprint=- 1, max_processes=None)[source]¶ - Parameters
maxfun (
int
) – Maximum number of function evaluations.factr (
float
) – The iteration stops when (f^k - f^{k+1})/max{|f^k|, |f^{k+1}|,1} <= factr * eps, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B.iprint (
int
) – Controls the frequency of output. iprint < 0 means no output; iprint = 0 print only one line at the last iteration; 0 < iprint < 99 print also f and |proj g| every iprint iterations; iprint = 99 print details of every iteration except n-vectors; iprint = 100 print also the changes of active set and final x; iprint > 100 print details of every iteration including x and g.max_processes (
Optional
[int
]) – maximum number of processes allowed, has a min. value of 1 if not None.
Methods
__init__
([maxfun, factr, iprint, max_processes])- type maxfun
int
return support level dictionary
gradient_num_diff
(x_center, f, epsilon[, …])We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
optimize
(num_vars, objective_function[, …])Perform optimization.
Print algorithm-specific options.
set_max_evals_grouped
(limit)Set max evals grouped
set_options
(**kwargs)Sets or updates values in the options dictionary.
wrap_function
(function, args)Wrap the function to implicitly inject the args at the call of the function.
Attributes
Returns bounds support level
Returns gradient support level
Returns initial point support level
Returns is bounds ignored
Returns is bounds required
Returns is bounds supported
Returns is gradient ignored
Returns is gradient required
Returns is gradient supported
Returns is initial point ignored
Returns is initial point required
Returns is initial point supported
Return setting
-
property
bounds_support_level
¶ Returns bounds support level
-
static
gradient_num_diff
(x_center, f, epsilon, max_evals_grouped=1)¶ We compute the gradient with the numeric differentiation in the parallel way, around the point x_center.
- Parameters
x_center (ndarray) – point around which we compute the gradient
f (func) – the function of which the gradient is to be computed.
epsilon (float) – the epsilon used in the numeric differentiation.
max_evals_grouped (int) – max evals grouped
- Returns
the gradient computed
- Return type
grad
-
property
gradient_support_level
¶ Returns gradient support level
-
property
initial_point_support_level
¶ Returns initial point support level
-
property
is_bounds_ignored
¶ Returns is bounds ignored
-
property
is_bounds_required
¶ Returns is bounds required
-
property
is_bounds_supported
¶ Returns is bounds supported
-
property
is_gradient_ignored
¶ Returns is gradient ignored
-
property
is_gradient_required
¶ Returns is gradient required
-
property
is_gradient_supported
¶ Returns is gradient supported
-
property
is_initial_point_ignored
¶ Returns is initial point ignored
-
property
is_initial_point_required
¶ Returns is initial point required
-
property
is_initial_point_supported
¶ Returns is initial point supported
-
optimize
(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)[source]¶ Perform optimization.
- Parameters
num_vars (int) – Number of parameters to be optimized.
objective_function (callable) – A function that computes the objective function.
gradient_function (callable) – A function that computes the gradient of the objective function, or None if not available.
variable_bounds (list[(float, float)]) – List of variable bounds, given as pairs (lower, upper). None means unbounded.
initial_point (numpy.ndarray[float]) – Initial point.
- Returns
- point, value, nfev
point: is a 1D numpy.ndarray[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
- Raises
ValueError – invalid input
-
print_options
()¶ Print algorithm-specific options.
-
set_max_evals_grouped
(limit)¶ Set max evals grouped
-
set_options
(**kwargs)¶ Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
- Parameters
kwargs (dict) – options, given as name=value.
-
property
setting
¶ Return setting
-
static
wrap_function
(function, args)¶ Wrap the function to implicitly inject the args at the call of the function.
- Parameters
function (func) – the target function
args (tuple) – the args to be injected
- Returns
wrapper
- Return type
function_wrapper