qiskit.algorithms.NumPyLinearSolver¶
-
class
NumPyLinearSolver
[source]¶ The Numpy Linear Solver algorithm (classical).
This linear system solver computes the exact value of the given observable(s) or the full solution vector if no observable is specified.
Examples
import numpy as np from qiskit.algorithms import NumPyLinearSolver from qiskit.algorithms.linear_solvers.matrices import TridiagonalToeplitz from qiskit.algorithms.linear_solvers.observables import MatrixFunctional matrix = TridiagonalToeplitz(2, 1, 1 / 3, trotter_steps=2) right_hand_side = [1.0, -2.1, 3.2, -4.3] observable = MatrixFunctional(1, 1 / 2) rhs = right_hand_side / np.linalg.norm(right_hand_side) np_solver = NumPyLinearSolver() solution = np_solver.solve(matrix, rhs, observable) result = solution.observable
-
__init__
()¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
()Initialize self.
solve
(matrix, vector[, observable, …])Solve classically the linear system and compute the observable(s)
-
solve
(matrix, vector, observable=None, observable_circuit=None, post_processing=None)[source]¶ Solve classically the linear system and compute the observable(s)
- Parameters
matrix (
Union
[ndarray
,QuantumCircuit
]) – The matrix specifying the system, i.e. A in Ax=b.vector (
Union
[ndarray
,QuantumCircuit
]) – The vector specifying the right hand side of the equation in Ax=b.observable (
Union
[LinearSystemObservable
,BaseOperator
,List
[BaseOperator
],None
]) – Optional information to be extracted from the solution. Default is the probability of success of the algorithm.observable_circuit (
Union
[QuantumCircuit
,List
[QuantumCircuit
],None
]) – Optional circuit to be applied to the solution to extract information. Default isNone
.post_processing (
Optional
[Callable
[[Union
[float
,List
[float
]]],Union
[float
,List
[float
]]]]) – Optional function to compute the value of the observable. Default is the raw value of measuring the observable.
- Return type
LinearSolverResult
- Returns
The result of the linear system.
-