{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# _*Pricing Fixed-Income Assets*_ " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "We seek to price a fixed-income asset knowing the distributions describing the relevant interest rates. The cash flows $c_t$ of the asset and the dates at which they occur are known. The total value $V$ of the asset is thus the expectation value of:\n", "\n", "$$V = \\sum_{t=1}^T \\frac{c_t}{(1+r_t)^t}$$\n", "\n", "Each cash flow is treated as a zero coupon bond with a corresponding interest rate $r_t$ that depends on its maturity. The user must specify the distribution modeling the uncertainty in each $r_t$ (possibly correlated) as well as the number of qubits he wishes to use to sample each distribution. In this example we expand the value of the asset to first order in the interest rates $r_t$. This corresponds to studying the asset in terms of its duration.\n", "
\n", "
\n", "The approximation of the objective function follows the following paper:
\n", "Quantum Risk Analysis. Woerner, Egger. 2018." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:25.388331Z", "start_time": "2020-07-13T23:39:23.208125Z" } }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", "from qiskit import Aer, QuantumCircuit\n", "from qiskit.aqua.algorithms import IterativeAmplitudeEstimation\n", "from qiskit.circuit.library import NormalDistribution" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:26.366384Z", "start_time": "2020-07-13T23:39:26.362453Z" } }, "outputs": [], "source": [ "backend = Aer.get_backend('statevector_simulator')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Uncertainty Model\n", "\n", "We construct a circuit factory to load a multivariate normal random distribution in $d$ dimensions into a quantum state.\n", "The distribution is truncated to a given box $\\otimes_{i=1}^d [low_i, high_i]$ and discretized using $2^{n_i}$ grid points, where $n_i$ denotes the number of qubits used for dimension $i = 1,\\ldots, d$.\n", "The unitary operator corresponding to the circuit factory implements the following: \n", "$$\\big|0\\rangle_{n_1}\\ldots\\big|0\\rangle_{n_d} \\mapsto \\big|\\psi\\rangle = \\sum_{i_1=0}^{2^n_-1}\\ldots\\sum_{i_d=0}^{2^n_-1} \\sqrt{p_{i_1,...,i_d}}\\big|i_1\\rangle_{n_1}\\ldots\\big|i_d\\rangle_{n_d},$$\n", "where $p_{i_1, ..., i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval $[low_j, high_j]$ using the affine map:\n", "$$ \\{0, \\ldots, 2^{n_{j}}-1\\} \\ni i_j \\mapsto \\frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \\in [low_j, high_j].$$\n", "\n", "In addition to the uncertainty model, we can also apply an affine map, e.g. resulting from a principal component analysis. The interest rates used are then given by:\n", "$$ \\vec{r} = A * \\vec{x} + b,$$\n", "where $\\vec{x} \\in \\otimes_{i=1}^d [low_i, high_i]$ follows the given random distribution." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:27.609551Z", "start_time": "2020-07-13T23:39:27.600449Z" } }, "outputs": [], "source": [ "# can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example.\n", "A = np.eye(2)\n", "b = np.zeros(2) \n", "\n", "# specify the number of qubits that are used to represent the different dimenions of the uncertainty model\n", "num_qubits = [2, 2]\n", "\n", "# specify the lower and upper bounds for the different dimension\n", "low = [0, 0]\n", "high = [0.12, 0.24]\n", "mu = [0.12, 0.24]\n", "sigma = 0.01*np.eye(2)\n", "\n", "# construct corresponding distribution\n", "bounds = list(zip(low, high))\n", "u = NormalDistribution(num_qubits, mu, sigma, bounds)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:28.547778Z", "start_time": "2020-07-13T23:39:28.126558Z" }, "tags": [ "nbsphinx-thumbnail" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAApvUlEQVR4nO3debwcVZ338c+XxJvIEoIGB54kkIAZY2YcESPivoCa4IxBBgeC+6AxyqosT1yQxWVGERQGJBNAHMYFEJl5RQ1EFAF5RASBwYkJGiKEC0RAwqKBXGJ+zx9VFyudvn17r6ru7/v16te9feqcqtNFuL/+nVN1ShGBmZlZM7bJuwNmZlZeDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGJmZk3LPYhImiXpx5I2SLpf0mmSxozS5mWSLpK0Om13p6STJY2v0eZASSHplvZ/CjOz/jQ2z4NL2gn4EfBrYB6wJ3AGSXD7VI2mh6R1vwD8Fvg74DPpz3+scpzxwJnA79vYfTOzvpd3JrIQeDZwUERcHRGLgVOBj0maUKPdFyLitRFxfkRcGxFnAycAB0navUr9E4D7gKva/QHMzIpG0px0hGa1pEVVts+UdKOkjZKOr9g2UdLlklZJWinpFbWOlXcQmQssj4jHM2WXkASW143UKCIeqlJ8W/rzedlCSbsBJwLHtNZVM7PiS6cDziX5+zoLmC9pVkW1R4CjgS9V2cVZwFURMRN4MbCy1vHyDiIzgVXZgohYC2xItzXilcBm4M6K8jOAyyLi1mY7aWZWIvsAqyNiTUQMkXwxn5etEBEPRsTNwNPZ8nQE6LXAhWm9oYh4tNbB8g4iOwGPVilfn26ri6RdgE8C/5nNaiS9AXhLus3MrB9MBu7NvB9My+qxB/AQcJGk2yRdIGm7Wg1ynVhPVVsBUiOUb11RGgAuA/4IfDRTPhY4G/hsRKyrc18LgAUA48aNe+kuz9u1nmZtE1JXj9dx29T+PGO3EZs2t38B0OjGaVR3Fi5Vi1/zxobY1EJfx2hzax3okrHk28/f/vbehyNi52bbv+b142P9I/V9hhW/enoF8FSmaElELMm8r/Z/QL3/CMYCewNHRcRNks4CFgEn1WqQp/XAxCrlO1I9Q9mCJAEXA38DvCoi1mc2fzDd939IGj7GADAmff+niNgilUv/QywBmLbb9Hjh0wfU/0naYGjmlK4er9Me23Ncze2Hv2YyF/70vrYf94ndOx9FNu421PFjAEybUm36r36HbdiLb217e9Pt37TLqtErFcDBE/IdrZ65G/e00n79I5v57g8m1XmsB56KiNk1qgwCUzPvpwD319mVQWAwIm5K319OEkRGlPdw1ioq5j4kTQW2o2KuZARfJhnrmxcRlfVfQHLy1pEEq/XAfGCv9PdDWum4WT+4el2jU5P5uPzxvfPuQpHcDMyQND0dqTkUWFpPw3TU5l5JL0iL9iO5BWNEeWciVwInSNohIp5Iyw4BngSuq9VQ0seBo4B/iogbqlQ5B/jvirJFwHTgQ4xyxYFZLePWDnQtGzFrRERsknQksBwYA3wtIlZIWphuX5zOI98CTAA2SzoWmJXOKR8FfDMNQGuA99c6Xt5BZDHJZWZXSPoCyaTOKcCZFRPkq4HrIuLw9P1hwOeBrwP3Sdo3s8+7IuKhiFgNrM4eTNL7gEkRcW2nPpBZO909uHPLQ1rWfyJiGbCsomxx5vd1JCM11dreDtQaLttCrsNZ6RzGfiTR8nskNxp+GTi5ourYtM6wN6c/3wfcWPF6a+d6bGZF5SGtfOSdiRARvwbeOEqdaRXv30cSQBo9VsNtzPrd1etmlmaC3bov74l162E73rUx7y5Yn3E20n0OImZm1jQHETMbVVku9bXucxAxs57iIa3uchAxa9K4tQNdOc7dg02vpmHWcQ4i1nN2uKc761qZmYNIoQysGsy7C2YjKtO8iIe0usdBxMzMmuYgYh3le0XMepuDiJnVzUNaVslBxKwEfIWWFZWDiJmZNc1BxMwa4iEty3IQMWtBt244NCsqBxEzM2uag4iZ9TQPaXWWg4h1XB73injpk84q07xIP5I0R9KdklZLWlRl+0xJN0raKOn4KtvHSLpN0vdHO5aDiFlJ+DJfq4ekMcC5wFxgFjBf0qyKao8ARwNfGmE3xwAr6zmeg4iZ9bw+G9LaB1gdEWsiYgi4BJiXrRARD0bEzcDTlY0lTQHeClxQz8EcRMysKR7SKqzJwL2Z94NpWb2+ApwIbK6nsoOImVm5TJJ0S+a1oGK7qrSpa5JQ0t8DD0bEL+vtzNh6K5pZdePWDrBxt6G8u2GjuPzxvTl4wq15d6Oq9X/etoEhtx88HBGza1QYBKZm3k8B7q9z568C3ibpAGA8MEHSNyLiXSM1cCZSMH6miJm16GZghqTpkgaAQ4Gl9TSMiI9HxJSImJa2u6ZWAAEHETNrgedFiiciNgFHAstJrrC6LCJWSFooaSGApF0kDQIfAz4laVDShGaO5+EssxK5e3Bnpk15KO9ulFaRh7TaKSKWAcsqyhZnfl9HMsxVax/XAteOdixnItYVfjiVWW9yEDGzlnhIq785iFjP8tInVk2f3XjYcQ4iZmbWNAcRszbwc0WsXzmImFnLyjYv4iGt9nEQMSsZr+ZrReIgYmZmTXMQsa7xvSK9zUNa/clBxMzMmuYgYmZmTXMQMbO+5SGt1jmImJVQUa/QKtu8iLXOQcSsTXzDofUjB5EC8oOp2sfrZ9loPKTVGgcRM2srD2n1FwcRMzNrmoOIdZVvOLQi8pBW8xxEzKztPKTVPxxEzEqqqJf5Wv4kzZF0p6TVkhZV2T5T0o2SNko6PlM+VdJPJK2UtELSMaMdy0HEzIzeGdKSNAY4F5gLzALmS5pVUe0R4GjgSxXlm4DjIuKFwL7AEVXabsFBxKyNfK+IFcA+wOqIWBMRQ8AlwLxshYh4MCJuBp6uKH8gIm5Nf38CWAlMrnUwBxEz6wjPi3TMJEm3ZF4LKrZPBu7NvB9klEBQjaRpwEuAm2rVG9vojs3MetXlj+/NwRNu7fpxH980voGg+4OHI2J2jQqqUtbQXbeStge+CxwbEY/XqutMxMystwwCUzPvpwD319tY0rNIAsg3I+KK0eo7iFjXdfteES99kh8PaeXiZmCGpOmSBoBDgaX1NJQk4EJgZUScWU8bBxGzEvNlvu1X9qu0ImITcCSwnGRi/LKIWCFpoaSFAJJ2kTQIfAz4lKRBSROAVwHvBt4o6fb0dUCt43lOxMysx0TEMmBZRdnizO/rSIa5Kt1A9TmVETkTMTOzpjmImFlHlXFepOxDWt3kIGLWZr7h0PqJg0hB+cFUZlYGDiJm1nEe0updDiJmJefLfC1PDiKWCz+cysrA2cjocg8ikmZJ+rGkDZLul3RaupRxrTYDkk6X9FNJT0oa8ZZkSc+V9O+S1qV1V0l6T/s/iZlZ/8k1iEjaCfgRyeJg84DTgOOAU0dpui3wAWAD8LMa+58AXA/sBRwFHAD8G+DLZ/qMlz7JXxnnRWx0ed+xvhB4NnBQulLk1ekf/lMkfXGk1SMj4lFJz4mIkHQk8MYR9v8JYBwwOyKeTMt+0ubPYGY9LK+Vfcsi7+GsucDyimBxCUlgeV2thhFRz1fL9wMXZgKIWVf4XhHrF3kHkZnAqmxBRKwlGaZqKfeVNB14HvCopGWShiQ9JOnMdGVLs55Rliu0PKTVe/IeztoJeLRK+fp0Wyt2SX9+kSS7mQO8GPg8yXOET6xskD4hbAHApEmTOOikl7fYhdbE+N6OdTttP8Dhr2n4gWtN2zzQ0LpybTje5q4eb9yGrc/lczZvy2Eb9upqP0Yz4d7yBZLbOJCdxmyoUeOYrvWlaPIOIlD9iVsaobwRw1nWioj4YPr7NZJ2AD4h6ZSI2OJfRUQsAZYATNttelzxLzWfCtlxQzOrLbLZOw5+3x5c+NP7una8J3bvbhDZuNtQV483bcpDW5UdtmEvvrXt7V3tRz3etMuq0SsVjOdFqst7OGs9MLFK+Y5Uz1Aa8Uj6s3Ii/RqSyfY9W9y/WU2eFxlZGYe1fM9IdXkHkVVUzH1ImgpsR8VcSRPuAqp9FRz+OtrdsYYm9Pr6WWM2dvey216/zLcs8yLDHEh6Q95B5ErgLekQ07BDgCeB61rZcUQMAVez9eW/+5FM3K9uZf9m1joHkvLLO4gsBjYCV0jaP53YPgU4M3vZr6TVki7MNpQ0V9LBJDcSIung9LV7ptppwEskXSTpzZKOBxYBn48Ir7thHdftIa2yZSNl5UDyF7kGkYhYT5IZjAG+R3Kn+peBkyuqjk3rZJ0HfAc4PH3/nfT1hsz+fwH8A8lVWd8juYTic8C/tPNzWHn0+pBWGZUxG4FiBxJJcyTdmX4BX1Rl+0xJN0ramH65rrttpdyvzoqIXzPyHefDdabVUzZC2+UkD6wvpYFVgz1/lVavG7d2oKtXat09uHPVK7WK7Op1M0t5xVYR72ZP1x48F3gTMAjcLGlp+rd22CPA0cCBTbTdQt7DWdbnvJqvDXNG0jb7AKsjYk06N3wJydqEz4iIByPiZuDpRttWchCxvuMhreIqayDpskmSbsm8FlRsnwzcm3k/mJbVo+G2uQ9nmfUDD2nVr6xDW60YGhrbyEURD0fE7Brbq91VW+83p4bbOhMxs8JxRtKSQWBq5v0U4P5OtXUQKYFev+kwD3kMafly38Y4kDTtZmCGpOnpYrOHAks71dZBxHLnyXUbiQNJ4yJiE3AkyVWpK4HLImKFpIWSFgJI2kXSIPAx4FOSBiVNGKltreN5TsSsi7o9N7JxaGzyHNAS68c5klZFxDJgWUXZ4szv60iGqupqW4szEetb/XKVVtmHtcAZSZE1nIlIehHJtcS7AONJblr5DfCz9A50MyuYMl+tNcwZSTHVlYlI2kPS6ZLuB24nWfPqWJLHz36GZEmRhyT9WNJ8Sc5w2qzXJ9f7aV4kryXinZFYJ4z6x17SBcAKkoUOTwNeAoyPiJ0jYkpEbE/yGNp/AH5F8iTBlZJe3bFem1lTHEis3erJGJ4CZkbEmyJicUTcERF/zlaIiIcj4sqIOBbYHfg09d8haZabvOZF8nxglQOJtdOoQSQijoyIe+rdYURsjohLI+LS1rpmZjYyB5Ji8NyFWR/qhWwEHEiKoKUgIulvJR0h6cj0qi3rIE+ud0Y/DmmBA4m1R9NBRNKHgeuB1wMHAL+Q9JE29cvMusCBxFpVz9VZI93v+n+BV0TEOyLiAOAI4JPt7JxZr8s7GwEHEmtNPZnIbyS9s0q5gM2Z9/1x+6/1pH65e30kDiTWrHqCyGHAx9Ln8b4sU/5F4OeSLpP0feCrwL92opP2F70+L9KPipCNgAOJNaeeS3yvB2YDXwOWSrpY0q4RcS7Js9FvAH5IMrT1bx3trfW8frpzvYgcSKxRdU2sR+J84AXA74FfSfoEsCoizk5ft3ewn2Yd1+9DWsMcSKwRDV2dFRGPR8QJwL7Ay4FVkg7uSM/M+khRhrTMGlXX1VmSPivpJkm3SVoCPBUR84APAidLuk7SizveWzPrCmcjVq96MpELSRZXPAM4iWQJ+KslKSJ+RLIw43fSsiWd6qj9hSfXOyfPIa2iZSMOJFaPeoLIXOD4iLgsIr4PvJdkbmRPgIj4c0Sck5Y92bGeWt/w5HpxOJDYaOoJIquAd0t6Tnrj4YeAPwFbfB2OiPURcUwH+mhmOXIgKR9JcyTdKWm1pEVVtkvS2en2OyTtndn2UUkrJP2vpG9LGl/rWPUEkfcCM4CHgSeADwDviIinGvtYZjaaog1pDXMgKQ9JY4BzSUaRZgHzJc2qqDaX5O/6DGABcF7adjJwNDA7Iv4WGAMcWut49dwncmdEvALYAZgUEc+PiKsa+lRmJeJLfatzICmNfYDVEbEmIoaAS4B5FXXmARent2/8HJgoadd021jg2ZLGAtsC99c6WD1XZ71b0jYR8ad6n6Eu6fmSXlNPXWuOJ9d7V1GzEXAgKYnJwL2Z94Ns/ZDAqnUi4j7gS8Ba4AHgsYj4Ya2D1TOcdRywRtJnal3GK+m5kt4p6XvAbcCuI9U1G40n14vLgaT9NCTGrR2o6wVMknRL5rWgcndVDlGZXletI2knkixlOvB/gO0kvatW38eO9uEiYi9JhwBHAZ+U9EdgJckcyUZgYnrA3YD1wDeAhWlEMyulHe4Jnti92v9n3TFu7QAbdxvK7fj94up1M3nTLqvy7kajHo6I2TW2DwJTM++nsPWQ1Eh19gd+FxEPAUi6Anglyd/1qupd9uTSiHg1ySTMCcDtwCZgO5JlUP4DmAPsGhHHOoCY9bZeyUagWBlJm9wMzJA0XdIAycT40oo6S4H3pFdp7UsybPUAyTDWvulN5gL2I0kaRjRqJpIVEXcBdzXSxsx6092DOzNtykN5d6MtSpqRVBURmyQdCSwnubrqaxGxQtLCdPtiYBnJwwRXAxuA96fbbpJ0OXArSaJwG1DzJvKGgogVy8CqQYZmTsm7Gx2z410beWzPcbkd30Nao3MgKaaIWEYSKLJlizO/B8mDBKu1PRk4ud5jtfSMdTMzD231NwcRswIr8uW+WQ4k/ctBxKwG33hYPweS/uQgUnK+6dCKxIGk/ziIWKH5psPyDGn1IgeS0bUURCS9XdLRkl5QUX5ka90yKw4PaTWml7IRcCAZTdNBRNK/AscAzyd5INWxmc3/3GK/zCyjbNmIA0n/aCUTeSuwf0QcDbwEeJuk09Nt+V1cb2aF4EDSH1oJIttExCaAiPgDybIn0yRd2OJ+rUGeXO8PZctGwIGkH7Tyx/6B7NOw0nXrDyFZLfJvW+2Y2bAiTK57XqR5DiS9re4gIulZ6eMSh58T8j4qVoaMiM0R8QHAzxIxs2c4kPSuuoNIRDwNPA8YSN8PRsS6Eer+rD3dM7OsMg5pDXMg6U2NDmd9C3h7JzpiVnQe0mpdrwUSazyI/A44UNKpkvJbXtW24sn1/lHmbKTXXL1uZt9nJI0Gkc+RPDLxJOBhSd9LA8pBkvZsf/fMEkWYXLf2cDbSWxoNIjuQPN3wH4HTgadInpp1GfBbSU+0t3tmxeIhrfZwIOkdjT7ZMEiebHgX8F/D5ZLGk1zW60t7zbqgDA+sGk0vPdCqn7XlpsCIeCoibomIr7djf2bWH5yRlJ/vLO8hnlzvjqIMafXKBLsDSftJmiPpTkmrJS2qsl2Szk6335G9cVzSREmXS1olaaWkV9Q6loOIlYYn13uXA0n7SBoDnAvMBWYB8yXNqqg2l2R+ewawADgvs+0s4KqImAm8GFhZ63gOImYl1ivZCDiQtNE+wOqIWJMuR3UJMK+izjzg4kj8HJgoaVdJE4DXAhdCspxVRDxa62AOImZNKMqQVq9xIGmLycC9mfeDaVk9dfYAHgIuknSbpAskbVfrYA1dnWXFN7BqkKGZU/Luhpk1YMxQQ19MJkm6JfN+SUQsybyv9iiOyp2PVGcssDdwVETcJOksYBHJvYFVOROxUvG8yNZ6aUgLnI3U4eGImJ15LanYPghMzbyfQsViuTXqDAKDEXFTWn45SVAZkYOImRWOA0lLbgZmSJouaYDkhvClFXWWAu9Jr9LaF3gsIh5IF9W9N/PI8/2AX9c6WO5BRNIsST+WtEHS/ZJOS68uGK3djpIukrRe0mOSvinpuRV1BiR9Or2M7cn0p9f9srYo0rxIr2Uj4EDSrPRhgUcCy0murLosIlZIWihpYVptGbAGWA2cD3wks4ujgG9KugPYC/h8rePlOiciaSfgRySRbh6wJ3AGSXD71CjNLwVeAHwA2Ax8AfhvtnyWyb8CC9N93UaSln0WmEjyfHgzKzDf1d6ciFhGEiiyZYszvwdwxAhtbwdm13usvCfWFwLPBg6KiMeBq9NLzE6R9MW0bCvpzS9vAV4XEdenZfcBN0naPyJ+lFY9DDgvIs5M3/9E0mTgnfRwEPHkuvUSB5Jiy3s4ay6wvCJYXEISWF43SrvfDwcQgIj4BclS9XMz9Z4FPFbR9lGqX5lgJVGkyXUPaXWHh7aKK+8gMhNYlS2IiLXAhnRb3e1SKyvaXQB8SNKrJG2fPtr3w8A5LfXazLrOgaSY8g4iO5FkBpXWp9tabbcI+C5wA/AEcD1wRUSc1kRfzQqvl7MRcCAporznRGDrm2AgGW4abZygnnYnAO8iudrgDpJ1YD4j6Q8R8emtGksLSNaRYdKkSRx00stH731Bxfji/zF5znPGccj86U21/fO4Yo1Ibh4oTn82D2x+5ve/GjOO47bfPcfetN+4DZU3X+fvurw7kKO8g8h6kiulKu1I9Uwj267aV5KJw+0kTSK5EuuIiDg/3X69pCHgHEnnRMSD2cbpTTtLAKbtNj2u+JebKLOiT64fMn86l377d023f2zP4lyp/cTuxQkiwDPPGjlu+90544/35NybzvBkezHkPZy1ioq5D0lTge2oPucxYrtUdq5kD5KJ9dsr6txGEjx76+uZ5apIE+z9wkNbxZB3ELkSeIukHTJlhwBPUjtDvBLYRdKrhwskzSYJHFemRcNfvypv2X9p+vPuJvtcGr3+fJEiXaUFxQokvT43MuzuwZ0dTHKWdxBZDGwErpC0fzoncQpwZvay3/RO8wuH30fEjSR3Y14s6SBJBwLfBG4YvkckIn5PcvPhFyQdI+kNkj5KcgPidyLCubD1tH4JJOCsJE+5BpGIWE+yNssY4HvAqcCXgZMrqo5N62QdSpKtfA24GPgl8PaKOu8lucz3aJK7N48A/h04vG0fouCcjXRXkbIRgG2G8v6e2D3OSvKR98Q6EfFr4I2j1JlWpexR4P3pa6R2jwPHpy+zrtjhnijURPtwRjI82d7rfId7d/XP15Q+5mzEoP+Gt5yVdIeDiFkHFG1Ya9i4tQN9F0yssxxE+oSzke4raiABZyXWPg4iZn3KWYm1g4NIH3E20n1FzkaG9VsgcTBpLwcRsw4rSyDpt2Bi7eEg0md6PRux1vRbIHEwaZ2DiPWUIg5pQTmykWHOSspP0hxJd6arfSyqsl2Szk633yFp74rtYyTdJun7ox3LQaQPORvJR5kCCTgrKStJY4BzSZ7yOguYL2lWRbW5wIz0tQA4r2L7MSQP+RuVg4j1nKJmI2XkrKSU9gFWR8SaiBgieeT4vIo684CLI/FzYKKkXQEkTQHeSrJk1KgcRPqUs5F8lC0bGdZvgaTkwWQycG/m/WBaVm+drwAnApupg4OI9aQiZyNlDiT9FkwKapKkWzKvBRXbqy3cVvmPrmodSX8PPBgRv6y3M7kvwGj5GVg1WPinH1rxjFs70FeLOULnn6I45qlo5IvPwxExu8b2QWBq5v0U4P466xwMvE3SAcB4YIKkb0TEu0Y6mDMR61nORjrHWUmh3QzMkDRd0gDJYzOWVtRZCrwnvUprX+CxiHggIj4eEVPSldMPBa6pFUDAQaTveW4kP2UPJOC5kiKKiE3AkSQP7lsJXBYRKyQtlLQwrbYMWAOsBs4HPtLs8TycZT1tx7s28tie4/LuRk/z80qKJyKWkQSKbNnizO9B8pC+Wvu4Frh2tGM5EzFnIznqhWxkmLOS/uQgYj2vyHMj0HuBpN+CSb9zEDHA2Yi1lwNJ/3AQsb7gbKT7+i0r6VcOIvYMZyPWCQ4kvc1BxPqGs5H8OCvpXQ4itgVnI/nq5UACzkp6kYOI9ZWiZyP9wFlJb3EQsa04G8lXr2cjwxxIeoODiPWdMmQj/RRIHEzKzUHEzHLnYFJeDiJWVa8PaTkbKSYHkvJxEDErsH4NJA4m5eEgYiNyNmJ5ciApBwcRs4Lrx2xkmLOS4nMQsZqcjRRDPwcScFZSZA4iZlYKzkqKyUHERtXr2UhZ9Hs2MsyBpFgcRKzvlWVICxxIhjkrqU3SHEl3SlotaVGV7ZJ0drr9Dkl7p+VTJf1E0kpJKyQdM9qxHESsLs5GrIgcSLYmaQxwLjAXmAXMlzSrotpcYEb6WgCcl5ZvAo6LiBcC+wJHVGm7BQcRM5yNlJmzkq3sA6yOiDURMQRcAsyrqDMPuDgSPwcmSto1Ih6IiFsBIuIJYCUwudbBHESsbs5GisOBZGsOJM+YDNybeT/I1oFg1DqSpgEvAW6qdTAHEbNUmbIRq65PspJJkm7JvBZUbFeVNpXfOmrWkbQ98F3g2Ih4vFZnxtbTY7NhA6sGGZo5Je9uGEk28sTu1f4W2Li1A2zcbSjvbtRNTw01kuk/HBGza2wfBKZm3k8B7q+3jqRnkQSQb0bEFaN1xpmIWUbZshEPa42sT7KSam4GZkiaLmkAOBRYWlFnKfCe9CqtfYHHIuIBSQIuBFZGxJn1HMxBxBrmuRErk34LJBGxCTgSWE4yMX5ZRKyQtFDSwrTaMmANsBo4H/hIWv4q4N3AGyXdnr4OqHU8D2eZVdjxro08tue4vLtRNw9rjW44kJRpiKsVEbGMJFBkyxZnfg/giCrtbqD6fMmInIlYU5yNFIuHterTb1lJNziImFVRtrkRq18fz5V0hIOINc3ZSLE4G2mMA0l7OIiYjaCM2YgDSWOclbTOQcRa4mzEeoEDSfMcRMxqcDbSP5yVNMdBxFrmbKR4HEia50DSGAcRs1GUMRux1jgrqZ+DiLWFs5HicTbSOgeS0TmImNWhrNnINkMOJK1yVlKbg4i1jbORYtrhnnBW0gYOJNU5iJjVqazZyDAHk9Y5K9mag4i1lbOR4nMgaZ0DyV84iJg1oOzZyDBnJa1zVpJwELG2czZSHg4krev3QOIgYtagXslGhjkrsVY4iFhHOBspHwcTa0buQUTSLEk/lrRB0v2STpM0po52O0q6SNJ6SY9J+qak51apN0/SryQ9JenXkg7pzCcx6w0OJNaIXIOIpJ2AHwEBzANOA44DTq2j+aXA64EPAO8DXgb8d8X+Xw18F/gJMBf4AfBtSW9uR/+tf/XakFYlZyVWr7wzkYXAs4GDIuLq9BnApwIfkzRhpEaSXgG8BXhvRHw3Iv4LeBfwakn7Z6qeBFwfEUdHxE8i4gTgKuDTnfpA9hce0io/B5JykjRH0p2SVktaVGW7JJ2dbr9D0t71tq2UdxCZCyyPiMczZZeQBJbXjdLu9xFx/XBBRPwC+F26DUnjgDcAl1W0vQR4haQdW+++9bNez0aGOSspl3Q64FySv4WzgPmSZlVUmwvMSF8LgPMaaLuFvIPITGBVtiAi1gIb0m11t0utzLTbE3hWlXorST73XzfRX2uQs5He4WBSGvsAqyNiTUQMkXxxnldRZx5wcSR+DkyUtGudbbcwtv39b8hOwKNVyten25ppt0emDlXqra/Y/gxJC0iiMsDGe/jq/9bog9VrXfXia65lEvBwV/vSbtfm3YHafnlhD5zjcnhBK40f3/TQ8qvWfXVSndXHS7ol835JRCzJvJ8M3Jt5Pwi8vGIf1epMrrPtFvIOIpBMqlfSCOXNtKt8r5Hap/8hlgBIuiUiZo/SB2uBz3Hn+Rx3R8Uf9YZFxJx29YW//I3b4hB11qmn7RbyDiLrgYlVynekeqaRbbdzlfKJmXbrM2WVdRhl/2ZmZTUITM28nwLcX2edgTrabiHvOZFVVMx9SJoKbEf1OY8R26WycyV3AU9XqTcT2Az8pon+mpkV3c3ADEnTJQ0AhwJLK+osBd6TXqW1L/BYRDxQZ9st5B1ErgTeImmHTNkhwJPAdaO02yW9DwQASbNJ5kOuBIiIjST3h7yjou0hwI0R8dgofVsyynZrnc9x5/kcd0dhznNEbAKOBJaTXEh0WUSskLRQ0sK02jJgDbAaOB/4SK22tY6niPyutkhvNvw18L/AF0iCwJnAVyLiU5l6q4HrIuLwTNlVJFdYHU+SWXwBeDAiXpOp82qSqc9zSG5EPCCtPyciftjJz2Zm1g9yzUQiYj2wHzAG+B7JjYZfBk6uqDo2rZN1KEm28jXgYuCXwNsr9n8DcDCwP0lkfRtwmAOImVl75JqJmJlZueU9J9JRXtyxOzp9njP1D5QUrV5OWUadPMeSBiR9Ol3m4sn056npqg99o5lznJ670yX9ND13W30rlzRG0v9N6/whff1Q0ss692m6KCJ68kVyM+H9JAs8volkna4/AZ+to+1VJEuo/CPJENlvgJ9W1Hk1sAk4m2R5ldNJ5mbenPdn76XznKk7nmQicB1wS96fu5fOMck85AbgY+m/5eNILm45K+/PXvRzTHLLwHqS4fIfJ39St6qzfVrnTJJ52eHFYDcCL837s7d87vLuQAf/UXw8/Q83IVN2Yvo/y4Qa7V5BcnPNazNl+6Rl+2fKlgPXVLRdBtyQ92fvpfOc2XYS8FPg630YRDr9b3kdcEZF2zNJ1qfL/fMX+Ryn9YanBY4cIYiMAXaqKBsA7gYuyvuzt/rq5eEsL+7YHR07z8Mk7UbyP/Qx7ep0yXT6HD8LqLzk/VGq373cq5o9x0nUqL39z5FcRJQtGwJWAM9rrrvF0ctBxIs7dkcnz/OwM0iuV7+1hX6WWafP8QXAhyS9StL2kl4DfJjk0vh+0ew5bkr6RfSlJLc4lFrey550UqEWd+xhnTzPSHoDybNj+ikwV+roOQYWkXzjviFT9tWIOK2hXpZbs+e4WZ9M93tBB/bdVb0cRKBAizv2uI6cZ0ljSS5c+GxEjLAWcN/o5L/lE0ge6nYUcAfwYuAzkv4QEf30ALdmz3FDJL2VJIgcFxF3tnPfeejlIOLFHbujk+f5g+n7/5A0fIwBYEz6/k8R8XRj3S2ljp1jSZOAzwJHRMT56fbrJQ0B50g6JyIebKrX5dLsOW5IelnvpcC/R8RX2rXfPPXynIgXd+yOTp7nF5CsIrqO5H/y9cB8YK/09365L6eT53gPkvm92yvq3EbyJXP3xrtbSs2e47pJ+muSS3t/TJL19YReDiJFXtyxl3TsPJNM7L6h4rWcJEi/Abi6TZ+h6Dp5ju9Jf+5d0fal6c+7m+xz2TR7juui5KmBy0m+gM6PiD+3us/CyPsa4069SCatHiD5Q7M/yRML/0jFzUMkq1heWFF2FcmNbQcBBwJ3MvLNhl8BXg98kf692bBj57nK8b5O/90n0ul/y/9FMmRzDElw/ijJJb+X5f3ZS3KO55Ks0XcByfzJwelr93T7s0kyvUeBtwL7Zl4vyfuzt3zu8u5Ah/9hzAKuIfk28QDwGWBMRZ27ga9XlE0ELkr/oz8OfAuYVGX/B5KsQLyRJOU9NO/P3IvnuaJN3wWRTp9jYALwJZJvyU+mfyi/COyQ9+cuyTm+Ow0ela/3pdunjbA9gLvz/tytvrwAo5mZNa2X50TMzKzDHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGJmZk1zEDGrgxL/I+m96fuZkm5Kn1t+iaTtK+q/VtJ9leXptnMlXditvpt1koOIWX3+iWRpjG+l779Ocmf3P5Hc6fyJ4YqStiFZDufjEfHHKvs6HXinpOd3sL9mXeEgYn1F0kCTTY8G/jMink6zi5cDx0bEcuBzwJsydQ8nWeX5P6vtKCLuJnkA1Ieb7ItZYTiIWM+StI2kP0k6VtJZkh5i6yXP69nP84FXApenRcOB6Mn054bhMkkTSNZcOiZqryn0XZJsxP8PWqn5H7D1sj2AbYETSZ6ZcRjNffvfD/gT8D8AEfEI8DvgKEnPIVnx9Za07knAjyLi56Ps82fAXwEvaqI/ZoXRy082NPu79OfXIuJTLeznpcDKiNicKTsC+A7weeC3wBFpxnJ45ri1rAD+DOxDGpzMysiZiPWyF5EMNX0uWyjpvPTKqXqXsN4FeDhbEBFXAs8jefriCyNiLXAm8OWIGJR0hKS16esjlTuMiE0ky7Pv0uiHMisSZyLWy14EXBsRT1aUfxs4heSxu/UYTxKMthARG0gfhSxpf+DFwCGSXkwyL/LKtOqNkm6IiDsqdrEx3bdZaTkTsV72d8CtlYURcX1E/L6B/TxC8nCnqiSNJbmk98Q0YL0euCYiVkXEKpJnar+uStOJ6b7NSstBxHqSpGcDe9Ke+YY7gek1ti8E1kfEpZmybTO/bweoon87p3V+04b+meXGQcR61d+Q/PtuRxD5f8Bu6R/+LUjaCTiZ5Pnkw64H9pP0z5L+GXgjcF1F09kkj0f9WRv6Z5Ybz4lYrxqeVL+rDfu6lmTYaQ5b30B4KrA0Ip4ZNouI2ySdyF8m9I+PiMpgNge4LiL+0Ib+meXGz1i3viUpIkKj1wRJZwHPj4i3tuG4Y4B7gEUR8Y1W92eWJw9nWd+RdIGkwfT3QUkX1NHsdOD1kv66DV14B8nd7pe0YV9muXImYlYnSYcCD0RE5fxGo/uZD9wXEde3p2dm+XEQMTOzpnk4y8zMmuYgYmZmTXMQMTOzpjmImJlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk17f8DvPmOhX+BTqsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# plot contour of probability density function\n", "x = np.linspace(low[0], high[0], 2**num_qubits[0])\n", "y = np.linspace(low[1], high[1], 2**num_qubits[1])\n", "z = u.probabilities.reshape(2**num_qubits[0], 2**num_qubits[1])\n", "plt.contourf(x, y, z)\n", "plt.xticks(x, size=15)\n", "plt.yticks(y, size=15)\n", "plt.grid()\n", "plt.xlabel('$r_1$ (%)', size=15)\n", "plt.ylabel('$r_2$ (%)', size=15)\n", "plt.colorbar()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cash flow, payoff function, and exact expected value\n", "\n", "In the following we define the cash flow per period, the resulting payoff function and evaluate the exact expected value.\n", "\n", "For the payoff function we first use a first order approximation and then apply the same approximation technique as for the linear part of the payoff function of the [European Call Option](03_european_call_option_pricing.ipynb)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:29.440094Z", "start_time": "2020-07-13T23:39:29.189392Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEQCAYAAACN2GLgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjbUlEQVR4nO3de5gcVZ3/8fdHrgEhgcUMyLqGi/wi+cV1dVBBkEFuEncNi0Ai+KxB3Cw+anYx+ANXgYjXIDcXYSVekmUFAoKCECISzATjBjARMRoCBokIIpfdITEJyRLy/f1xakil0jPdPdPVPTP5vJ6nn6aqzqn+dlPMl1PnnDqKCMzMzBrtVa0OwMzMhiYnGDMzK4UTjJmZlcIJxszMSuEEY2Zmpdi+1QEMFHvttVeMGjWq1WEMCWvXrmXXXXdtdRhmPfI12jhLlix5PiJeU+mYE0xm1KhRLF68uNVhDAmdnZ10dHS0OgyzHvkabRxJv+/pmG+RmZlZKZxgzMysFE4wZmZWCicYMzMrRVMTjKRTJP1Q0lOS1khaIukDNdQbLmmmpC5JqyRdJ+kvKpQbL2mppPWSlkmaUM43MTOzaprdgvkksAY4G3gfMB+4XtInqtS7EegAPgJMAg4Bbs0XkHQ4cEt2zhOAOcANko5rWPRmZlazZg9T/ruIeD63/RNJryUlnisrVZB0KHA8cGRE3Jvtewq4X9IxETEvK3o+cG9ETMm250saA1wA/LiE72JmZr1oagumkFy6PQiM7KXaCcAz3cklO88DwOPZMSTtBBwF3FSoOxs4VNLw/sRtZmb1Gwid/IcBy3o5PhpYXmH/w9kxgAOAHSqUe5j0HQ/qZ4xmZlanls7kl3Q0MB74cC/F9gBeqLC/C9g/V4YK5boKx4ufPxmYDNDW1kZnZ2e1kK0Ga9as8W85AC19alWrQxgw2obBldfd1uowBoyx+5Zzk6dlCUbSKOB64LaImFWleKVlN1Vhf3FbvdQnImYAMwDa29vDj45oDD+GY2CadN6cVocwYEwdu5FLl/pJWd1Wnt5RynlbcotM0p7AXOAJ4INVincBIyrsH8HmFktXbl+xDFRuAZmZWYmanmAk7QLcAewIvDci1lapspzNfS15+b6Zx4CXKpQbDWwCHu1zwGZm1ifNnmi5PfA94A3ACRHxbA3V5gJ7Z/Ncus/TTup/mQsQERtI819OKdSdACyKCN98NjNrsmbfhLwaGAf8M7CnpHfkjj0YERskrQAWRMSZABGxSNJdwLWSziG1SKYDC3NzYAA+D3RKuoI0CXNc9npPyd/JzMwqaHaC6Z5V/7UKx/YDVpJi2q5wbCJwOfAdUqvrDmBKvkBELJR0MvAF4KOkeTKnRYQnWZqZtUBTE0xEjOpLmYh4ATgje/VW91YKj5AxM7PWGAgTLc3MbAhygjEzs1I4wZiZWSmcYMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFK1YcOxASddIekjSy5I6a6gzTVL08Pp0rtysHspUWrDMzMxK1IpFqceQ1mm5j7SqZS2+BfyosO9E4FyyRcdylrP1U5dX1hWhmZn1WysSzO0RcRuApJuBvapViIgngSfz+ySdDyyPiF8Wiq+NiPsaFKuZmfVR02+RRcSm/p5D0p7AscAN/Y/IzMzKMFg7+U8GdgBmVzh2sKTVkjZIWijpyCbHZmZmDN4EMxH4RUQ8Wtj/IDAV+DvgdNLSy3dLeluT4zMz2+YpIlr34VkfTER01FFnH1J/zLkRcUmVssOAZcBDEXFiheOTgckAbW1tb509u1KDyOq1Zs0aXv3qV7c6DCtY+tSqVocwYLQNg2debHUUA8fYfYf3ue5RRx21JCLaKx1rRSd/f50KCLixWsGIeFHSnaQWTaXjM4AZAO3t7dHR0dHAMLddnZ2d+LcceCadN6fVIQwYU8du5NKlg/HPXzlWnt5RynkH4y2yicDCiPhDHXVa10wzM9tGDaoEI2kU8A5qHD2W3SI7AVhSYlhmZlZB09uIknYhTbQE2BfYXdLJ2fadEbFO0gpgQUScWag+EdgI3FzhvMOBO4DvAitI82vOzj7j1IZ/ETMz61UrbkKOBL5X2Ne9vR9p1v32pBFgRROBeyLiuQrHNgDPAZ/NPmM9sAg4MiIW9z9sMzOrR9MTTESsJHXS91ZmVA/739xLnfXASf0IzczMGmhQ9cGYmdng4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlYKJxgzMyuFE4yZmZXCCcbMzErhBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBRNTzCSDpR0jaSHJL0sqbOGOqMkRYXX7Aplx0taKmm9pGWSJpTyRczMrFetWA9mDGnBsfuAHeusew7ws9z28/mDkg4HbgGuBqZkn3ODpK6I+HGfIzYzs7q1IsHcHhG3AUi6mbTyZK0eiYj7ejl+PnBvREzJtudLGgNcADjBmJk1UdNvkUXEpjLOK2kn4CjgpsKh2cCh2ZLKZmbWJIOtk39m1m/ztKTLJA3LHTsA2AFYXqjzMOl7HtSsIM3MrDW3yPpiA3AV6TbXaqADOJeUVMZnZfbI3l8o1O0qHH+FpMnAZIC2tjY6OzsbGPK2a82aNf4tB6CpYze2OoQBo22Yf4+8sv57HRQJJiKeBj6e29Up6Rngaklvjohf5osXqquH/UTEDGAGQHt7e3R0dDQs5m1ZZ2cn/i0HnknnzWl1CAPG1LEbuXTpoPjz1xQrT+8o5byD7RZZ3s3Z+1uy9+6WyohCue7tF8oNx8zM8gZzgonC+2PAS8DoQrnRwCbg0SbFZWZm1HGLTNII4AjgbcDewM7A/5D+cP+scJuqGU7O3pcARMQGSfOBU4BrcuUmAIsiYlWT4zMz26ZVTTCS3gV8Avhb0sTIJ0gTHDcAfwOcAewq6XHg28BVEbG6l/PtQpoACbAvsLuk7mRxZ0Ssk7QCWBARZ2Z1pgG7kSZZrgbeBXwK+H5E/Cp3+s+T+meuAG7NPmcc8J5q39PMzBqr1wQjaR6pj+MW4O+B/yomD0kC/g9wAqn1cI6kD0XEHT2cdiTwvcK+7u39gJVZXNvlji8nzeL/CDCMlOS+Cnwxf5KIWJglqy8AHwUeB07zLH4zs+ar1oL5EXBiRKzpqUBEBCkBLAcul/Q2YM9eyq9k88iunsqMKmzPJk2YrCoibiW1XszMrIV6TTARcUm9J4yIB/oejpmZDRWDeRSZmZkNYDUlGEltkvYv7DtM0t2SfiFpuqSdywnRzMwGo1pbMN8ldbIDIGlv4E7SyK7FpA71ixsenZmZDVq1Jph2UkLpdiqwCjgiIiYD/wSc1ODYzMxsEKs2THl+9o/DgWmSPkkaAfYGYCfgrjRKmV2AfST9JCs/KyKuLSdkMzMbDKqNIjsKQNILwLSIuCOb9/IH4FMRMSs7fjBpjsy7yw3XzMwGi1ofFbMIuETSq4EjSQ+QzN8yGwP8rrGhmZnZYFZrgpkCfB+4HlgHfCwins0d/zjwwwbHZmZmg1hNCSYifguMlbQHsDoiXi4U+Qfg2a1rmpnZtqquFXcioquH/b9vTDhmZjZU9DpMWdIR9Z5Q0nBJY/sekpmZDQXV5sHcJOlnkj6c3R7rkaR3SroS+D1waMMiNDOzQalagtmf1Hl/IfCspN9IulHSVZIuk/QdSfOzYcw/Af4SOCZb674iSQdKukbSQ5JeltRZLUhJh0iaKWmFpHWSHpF0YfHxNJJmSYoKr+Iql2ZmVrJq82BeBKZLuhg4Gng38FbSMsTdK1o+QhpddlthZFlPxpAWAbuPtIBZLSYABwDTgd8CbyItLvYm4P2FsstJi6Dlrazxc8zMrEFqHUUWwLzs1V+3R8RtAJJuBvaqoc70iHgut90paT1wjaTXFwYZrI2I+xoQp5mZ9UPTH9cfEZv6UOe5CrsfzN5H9i8iMzMrw2BeD+YwYBPpFl3ewZJWS9ogaaGkI1sQm5nZNq+ueTADRbZcwGeA/4yI1blDDwL3A8uA1wBTgbslHV5ppU1Jk4HJAG1tbXR2dpYd+jZhzZo1/i0HoKljN7Y6hAGjbZh/j7yy/ntV6l5pje4+mIjoqKPOjqS+oL8E3trT5M+s7DBSsnkoIk7s7bzt7e2xePHiWsOwXnR2dtLR0dHqMKxg1HlzWh3CgDF17EYuXToo//+6FCu/8t4+15W0JCLaKx0bVLfIsic5X0s2Eq235AKvjIK7E3hLE8IzM7OcmhOMpDMlvaHMYGpwOTAeGB8Ry+uo17pmmpnZNqqeNuIlwO6SngMWAj/NXr/sy8iwekn6NPAJ4NSIWFhjnWHACcCSMmMzM7Ot1ZNg9gTeDByRvc4jtSj+LGkR8NOI+GK1k0jahTTREmBfUtI6Odu+MyLWSVoBLIiIM7M6pwFfAmYBT0l6R+6Uj0XEc5KGA3cA3wVWkObXnJ19xql1fE8zM2uAmhNMNtnywez1bwCSjiWN5joOOBaommBI81a+V9jXvb0fadb99sB2uePHZe+TslfeGaTEswF4Dvhs9hnrSQulHRkR7r03M2uyuoZRSHojm1swR5BaB78BriLdLqsqIlYCqlJmVGF7ElsnlmKd9cBJtcRgZmblqznBSHoW2J3Un3Ev8DFgYUSsKik2MzMbxOoZpryRdNtqx+y1A1vexjIzM3tFzQkmIl4LvBG4mtThfwnpEf6/lnS1pAklxWhmZoNQXRMtI2JFRMyMiDMi4kDSEODngbNIj+w3MzMD6uuD2Y40I767g/9wUktmFTCHGjv5zcxs21DPKLJVwDDgT6SJltNISWVptPKBZmZmNiDVk2A+AdwbEY+VFYyZmQ0d9Uy0nJnflrRDRLzU+JDMzGwoqKuTX9JhkuZK+jOwXtKfJd0p6dCS4jMzs0Gqnk7+Y0md+Y8AXwWeAdqAk4FOSe+NiHmlRGlmZoNOPX0wXwR+CJxS6NS/SNItpIdROsGYmRlQ3y2yscA3exgxNiM7bmZmBtSXYF4ADujh2IHZcTMzM6C+BPM94MuSPihpZwBJO0v6IOn22U21nETSgZKukfSQpJclddZYb7ikmZK6JK2SdJ2kv6hQbrykpZLWS1rmR9iYmbVGPQnmXNKCXv8BrJW0Clibbd+RHa/FGNKCY49mr1rdCHQAHyE9uv8Q4NZ8AUmHA7cA80mPsZkD3CDpOMzMrKnqmQfzInC6pM+T/rjvAzwN/DwiltfxmbdHxG0Akm4mrTzZq2wY9PGkxcPuzfY9Bdwv6Zjc6LXzSZNBp2Tb8yWNAS4AflxHjGZm1k91LTgGkCWTehJKsf6mPlQ7AXimO7lk53lA0uPZsXmSdgKOAqYU6s4GZkoa7rVrzMyap9cEI+ngek4WEcv6F06PRlM5qT2cHYM0AGGHCuUeJt0KPAj4eUnxmZlZQbUWzK+BWh5kqaxcWQuQ7UHlUWpdwP65MlQo11U4/gpJk4HJAG1tbXR2dvY5wKVPuXHUrW0YXHndba0OY8AYu+/wVocAwNSxG1sdwoDRNsy/R15//vb1plqCOaqUT+2bSolOFfYXt9VT/YiYQZrDQ3t7e3R0dPQ5uEnnzelz3aFm6tiNXLq07ruvQ9bK0ztaHQLgazTP1+iWyrpGq/3CHwI+HxGPS3oX8IuIWFNKJL3rAl5TYf8INrdYunL7imXA83TMzJqq2jDlD7H5D/t8oK4+mQZazua+lrx838xjwEsVyo0GNlHfkGgzM+unagnmaaBD0qtJt5p2lrRLT68S45wL7J3NcwFAUjup/2UuQERsICXBUwp1JwCLPILMzKy5qt0imwF8BfgyqQ9jfpXyVTv5s0Q0LtvcF9hd0snZ9p0RsU7SCmBBRJwJEBGLJN0FXCvpHFKLZDqwsPAE58+Tnux8BWkS5rjs9Z5qcZmZWWP1mmAi4iJJc4A3AtcCXyDdiuqPkaTHzuR1b+8HrMziKiaricDlwHdILa87KMx5iYiFWbL6AvBR4HHgtIjwJEszsyarOowiIpYASyQdDcyMiMf784ERsZLNI7t6KjOqwr4XgDOyV291b6XwCBkzM2u+eh4V0+sfdjMzs7y6BoJnHesnAX8J7Fw8HhGnNiguMzMb5OpZMvmjwFXA88Bvgf8tKygzMxv86mnBnEPqYD8rIvyMBTMz61U968GMBG5wcjEzs1rUk2DmAm8vKxAzMxta6nlc/1XADEk7AHdT4dleJT6u38zMBpl6H9cv4ELSCpEU9pf5uH4zMxtkBtPj+s3MbBCp9qiYBc0KxMzMhpaaO/kljZS0X25bkiZLukLS35UTnpmZDVb1jCKbBZyd2/4ccDXpScU/kDSpcWGZmdlgV0+CeQvwEwBJryI9rfhfI2I08EXgXxoenZmZDVr1JJjhwH9n//xWYE/gumz7J8CBtZxE0sGS7pG0TtIfJV0kqdfRZ5KmSYoeXp/OlZvVQ5lKq2GamVmJ6nlUzJOkJZN/CrwXWB4RT2XHhgPrq51A0h7APGAZMB44ALiUlOg+20vVbwE/Kuw7ETiXbEXLnOVs/Uj/ldViMzOzxqonwXwHuFjSMaQE8+ncsXcAD9dwjrOAYcBJEbEauFvS7sA0SRdn+7YSEU+SEtwrJJ1PSnK/LBRfGxH31fKFzMysPDXfIouILwOfAP6Uvf9b7vCepFZGNScAdxUSyWxS0jmy1lgk7QkcC9xQax0zM2uuutaDiYhrSUsnF/efVeMpRpMNFMjVfULSuuzY7TWe52RgB1JyKjpY0mpgJ+DnwGc8n8fMrPnqSjAAkrYH/orKC45VexbZHlR4hhnQlR2r1UTgFxHxaGH/g8D9pD6e1wBTSbfhDo+IB4onkTQZmAzQ1tZGZ2dnHSFsaepYP2S6W9sw/x55/bmuGsn/TjbzNbqlsq7RehYc24F0W+xDpNZBJbU8iywq7FMP+yvFsQ/pdtq5W5044muFsnNIyeZfSYMCiuVnADMA2tvbo6Ojo5YQKpp03pw+1x1qpo7dyKVL6/5/lyFr5ekdrQ4B8DWa52t0S2Vdo/UMU74A+FvgTFJC+DhptNY9pFFatczm7wJGVNg/nMotm0pOzT7/xmoFI+JF4E7SHB4zM2uiehLMqcA04KZs+4GIuDYijgMWkoYdV7Oc1NfyCkmvA3bNjtViIrAwIv5QY3mosXVkZmaNU0+CeR3waES8TJrzku8zuQ54fw3nmAscL2m33L4JwItA1Y54SaNIQ6JrGj0maRhp5NqSWsqbmVnj1JNgnmbz7a3HgXfljh1Q4zm+AWwAvi/pmKyTfRpwWX7osqQVkr5dof5EYCNwc/GApOGSfirpnyQdLWkCMB/YF/hSjfGZmVmD1NPL1QkcQRpK/E3gEkkHkhLGBGpoVUREl6Sjga9n53kBuJyUZIpxVRowMBG4JyKeq3BsA/Ac6YkAI0mtrEXAkRGxuFpsZmbWWPUkmM8AewFExBWSRJqPMgy4EriolpNkQ5nfXaXMqB72v7mXOuuBk2qJwczMyldzgomIP5Fm8XdvX05qfZiZmW2lngXH/lrSuB6OjZP0psaFZWZmg109nfyXA2/v4dghuDVjZmY59S449rMeji0C/qb/4ZiZ2VBRT4LZjjQhspJdgR37H46ZmQ0V9SSYn5M9GLKCyYCHApuZ2SvqGaY8DZgn6X7gP0gjyvYB/gH4a9L6LGZmZkB9w5TvlXQc8GXSvBcBm0iPxz82In5aTohmZjYY1bvgWCdwqKRdSM8i64qIdWUEZmZmg1ufFkTIkooTi5mZ9aieTn4zM7OaOcGYmVkpnGDMzKwUTU8wkg6WdI+kdZL+KOkiSZUezZ+vM0pSVHjNrlB2vKSlktZLWpatC2NmZk3Wp07+vpK0BzAPWEZaYvkA4FJSovtsDac4hy0fV/N84fyHA7cAVwNTgHHADZK6IuLH/f4CZmZWs6YmGOAs0voxJ2UrWN4taXdgmqSL86ta9uCRiLivl+PnA/dGxJRse76kMcAFgBOMmVkTNfsW2QnAXYVEMpuUdI7sz4kl7QQcBdxUODSbNHdneH/Ob2Zm9Wl2ghkNLM/viIgnSHNqRtdQf6aklyU9LekyScNyxw4AdiieH3iY9D0P6nvYZmZWr2bfItsDeKHC/q7sWE82AFeRbnOtBjqAc0lJZXzu3FQ4f1fh+CskTSZ7gGdbWxudnZ29R9+LqWM39rnuUNM2zL9HXn+uq0byv5PNfI1uqaxrtNkJBiAq7FMP+1OFiKeBj+d2dUp6Brha0psj4pe9nF89fW5EzABmALS3t0dHR0fV4Hsy6bw5fa471Ewdu5FLl7bi0hqYVp7e0eoQAF+jeb5Gt1TWNdrsW2RdwIgK+4dTuWXTm5uz97fkzk2F83dv13t+MzPrh2YnmOUU+lokvY60YFmx76SaKLw/BrxUPH+2vQl4tM7zm5lZPzQ7wcwFjpe0W27fBOBFYEGd5zo5e18CEBEbgPnAKYVyE4BFEbGq/nDNzKyvmn0T8hukCZDflzQd2J+0kNll+aHLklYACyLizGx7GrAbaZLlauBdwKeA70fEr3Ln/zypf+YK4FbSRMtxwHvK/FJmZra1prZgIqILOBrYDrgd+BxwOXBhoej2WZluy0nzZGYCdwKnAV/N3vPnX0hq2RwD3AW8DzjNs/jNzJqv6cMoImIZ8O4qZUYVtmeTJkzWcv5bSa0XMzNrIT9N2czMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUTU8wkg6WdI+kdZL+KOkiSdtVqXOIpJmSVmT1HpF0oaSdC+VmSYoKr+Iql2ZmVrKmPq5f0h7APGAZMB44ALiUlOg+20vVCVnZ6cBvgTeRFhd7E/D+QtnlwBmFfSv7GbqZmdWp2evBnAUMA07KVrC8W9LuwDRJF+dXtSyYHhHP5bY7Ja0HrpH0+oj4fe7Y2oi4r5zwzcysVs2+RXYCcFchkcwmJZ0je6pUSC7dHszeRzYuPDMza5RmJ5jRpFtYr4iIJ4B12bF6HAZsAh4p7D9Y0mpJGyQtlNRj4jIzs/I0+xbZHsALFfZ3ZcdqImlv4DPAfxZaQw8C95P6eF4DTCXdhjs8Ih6ocJ7JwGSAtrY2Ojs7aw1hK1PHbuxz3aGmbZh/j7z+XFeN5H8nm/ka3VJZ12izEwxAVNinHvZvXVDaEbgJWAOcvcWJI75WKDuHlGz+FThxq0AiZgAzANrb26Ojo6OWECqadN6cPtcdaqaO3cilS1txaQ1MK0/vaHUIgK/RPF+jWyrrGm32LbIuYESF/cOp3LLZgiQB1wJjgHER0dVb+Yh4EbgTeEu9gZqZWf80O4Uvp9DXIul1wK4U+mZ6cDlpePOxEVFL+W41tY7MzKxxmt2CmQscL2m33L4JwIvAgt4qSvo08AnggxGxsJYPkzSMNHJtSd/CNTOzvmp2C+YbwBTg+5KmA/sD04DL8p31klYACyLizGz7NOBLwCzgKUnvyJ3zsYh4TtJw4A7gu8AKYC9SH82+wKklfy8zMytoaoKJiC5JRwNfB24n9btcTkoyxbjyj485LnuflL3yziAlng3Ac6QnAowE1gOLgCMjYnFjvoGZmdWq6cMoImIZ8O4qZUYVtiexdWIp1lkPnNS/6MzMrFH8NGUzMyuFE4yZmZXCCcbMzErhBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjQ9wUg6WNI9ktZJ+qOkiyRtV0O94ZJmSuqStErSdZL+okK58ZKWSlovaZmkCeV8EzMz601TE4ykPYB5pCWMxwMXAVOBz9VQ/UagA/gI6dH9hwC3Fs5/OHALMJ+0kuUc4AZJx2FmZk3V7PVgzgKGASdlK1jeLWl3YJqki/OrWuZJOhQ4nrR42L3ZvqeA+yUdExHzsqLnA/dGxJRse76kMcAFwI/L+1pmZlbU7FtkJwB3FRLJbFLSObJKvWe6kwtARDwAPJ4dQ9JOwFHATYW6s4FDsyWVzcysSZqdYEYDy/M7IuIJYF12rOZ6mYdz9Q4AdqhQ7mHS9zyoD/GamVkfNfsW2R7ACxX2d2XH+lJv/1wZKpTrKhx/haTJwORsc42kR3qJwWo0BfYCnm91HAOFprc6AivyNbqlfl6jr+/pQLMTDKQO/iL1sL8v9Yrb6ql+RMwAZlT5XKuTpMUR0d7qOMx64mu0OZp9i6wLGFFh/3Aqt1Cq1RuRq9eV21csQ5Xzm5lZgzU7wSyn0Nci6XXArlTuY+mxXibfN/MY8FKFcqOBTcCjfYjXzMz6qNkJZi5wvKTdcvsmAC8CC6rU2zub5wKApHZS/8tcgIjYQJr/ckqh7gRgUUSs6n/4ViPfdrSBztdoEyiiWtdHAz8sTbRcBvwamE5KEJcBV0TEZ3PlVgALIuLM3L4fkUaCnUNqkUwHno2II3JlDgc6ga+TJmGOy8q/JyI8D8bMrIma2oKJiC7gaGA74HbSDP7LgQsLRbfPyuRNJLVyvgNcCywB/r5w/oXAycAxwF3A+4DTnFzMzJqvqS0YMzPbdvhpytYQkg6UdI2khyS9LKmz1TGZ5Uk6RdIPJT0laY2kJZI+0Oq4hrJWzIOxoWkMqc/rPmDHFsdiVsknSY+XOps0yXIccL2kvSLiypZGNkT5Fpk1hKRXRcSm7J9vBvaKiI7WRmW2WZZIni/sux44NCL2a1FYQ5pvkVlDdCcXs4GqmFwyDwIjmx3LtsIJxsy2ZYeRpk5YCdwHY2bbJElHkxY+/HCrYxmq3IIxs22OpFHA9cBtETGrtdEMXU4wZrZNkbQn6RFTTwAfbHE4Q5oTjJltMyTtAtxBGkr/3ohY2+KQhjT3wZjZNkHS9sD3gDcA74yIZ1sc0pDnBGMNkf2f4bhsc19gd0knZ9t3RsS61kRm9oqrSdfoPwN7SnpH7tiD2RPZrYE80dIaIus0fbyHw/tFxMrmRWO2NUkr6Xl5X1+jJXCCMTOzUriT38zMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYswFK0jRJldYw6cu5LsnmgZg1jROM2cD1LeD4Vgdh1ld+VIzZACNpB2BTRDwJPNnqeMz6yi0Ysz6SNEvSYkknSlouab2khZIOzpV5laTzJK2QtEHSo5I+VDhPp6SbJU2W9BiwHnhtpVtkkvaTdKuk1ZL+LOl2SQcWyoyQdL2ktZKelvSZCrGPkPQtSX/M4n5C0jcb+wvZts4tGLP+eT1wGXA+8CLwOeAuSW+IiPXAlcCHgIuAXwDHAt+R9N8RcUfuPO8EDgDOBdYBq4ofJGkn4B7gJeAfgY3Z5y2QNDYi/icrOhPoAP4F+BNwTnbujbnTXUZaLvjsrMzrgHf143cw24oTjFn/7AWMj4j/ApC0BHgMmCRpHvBR4IyI+I+s/DxJ+wAXktYl6TYC+JuI+FP3DknFzzoD+CvgoIj4XVbmfuB3wD8BX5Y0BjgRmBgRN2Zl5pMW11qdO9fbgKu6y2S+25cfwKwnTjBm/fNsd3IBiIjfZ0nmbUAAm4AfZGuRdLsH+ICk7SLi5Wzfknxy6cHbgF90J5fs856U9DPg8GzXIdn7D3Nl1ki6G3h77ly/BD4l6WVgXkQ8WuP3NauZ+2DM+qfSolXPAvuQWjfbkW53vZR7zSL9z90+uTrP1PBZ+/RQ7hlgz+yf9wb+HBEvVonz48CtwAXAI5J+K2liDTGY1cwtGLP+GdnDvt8A/0Pq93gnqSVTlP+jX8u6GU8DYyrsb8s+C1J/ym6ShhWSzBZxRsQLwBRgiqQ3Af8PuE7SryJiWQ2xmFXlFoxZ/4yUdFj3hqS/At4CPAD8hNSCGR4Riyu8/rfOz7ofeKuk/XKfty+ps35htuvn2fv7cmVeTRpcUFFE/Ar4FOnvweg6YzLrkVswZv3zPPCfkrpHkV1EapnMioj1kr4BzJZ0MbAY2JnUCjkoIj5S52fNIo0ymyvpAuBlYFoWwzUAEfEbST8E/l3S7qRWz6dII9NeIWkh8APg16TW0z8Ca0mJ0awhnGDM+uf3wJeAr5CGLC8GPpANUQb4GPAo6Q/4RaSRXMuAb9f7QRGxQdIxpCHG3wYEdAIn5YYoA0wC/h24AlgDXEVq2ZycK7MoKzeKlKgeBE7IJneaNYSXTDbrI0mzgP8bEe2tjsVsIHIfjJmZlcIJxszMSuFbZGZmVgq3YMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSvH/AfhURLEx9PCDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# specify cash flow\n", "cf = [1.0, 2.0]\n", "periods = range(1, len(cf) + 1)\n", "\n", "# plot cash flow\n", "plt.bar(periods, cf)\n", "plt.xticks(periods, size=15)\n", "plt.yticks(size=15)\n", "plt.grid()\n", "plt.xlabel('periods', size=15)\n", "plt.ylabel('cashflow ($)', size=15)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:29.698674Z", "start_time": "2020-07-13T23:39:29.688947Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exact value: \t2.1942\n" ] } ], "source": [ "# estimate real value\n", "cnt = 0\n", "exact_value = 0.0\n", "for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])):\n", " for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])):\n", " prob = u.probabilities[cnt]\n", " for t in range(len(cf)):\n", " # evaluate linear approximation of real value w.r.t. interest rates\n", " exact_value += prob * (cf[t]/pow(1 + b[t], t+1) - (t+1)*cf[t]*np.dot(A[:, t], np.asarray([x1, x2]))/pow(1 + b[t], t+2))\n", " cnt += 1\n", "print('Exact value: \\t%.4f' % exact_value)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:30.128058Z", "start_time": "2020-07-13T23:39:30.124504Z" } }, "outputs": [], "source": [ "# specify approximation factor\n", "c_approx = 0.125\n", "\n", "# get fixed income circuit appfactory\n", "from qiskit.finance.applications import FixedIncomeExpectedValue\n", "fixed_income = FixedIncomeExpectedValue(num_qubits, A, b, cf, c_approx, bounds)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
                                                                           \n",
       "q_0: ───────────────────■──────────────────────────────────────────────────\n",
       "                        │                                                  \n",
       "q_1: ───────────────────┼─────────────■────────────────────────────────────\n",
       "                        │             │                                    \n",
       "q_2: ───────────────────┼─────────────┼─────────────■──────────────────────\n",
       "                        │             │             │                      \n",
       "q_3: ───────────────────┼─────────────┼─────────────┼─────────────■────────\n",
       "     ┌───────────┐┌─────┴──────┐┌─────┴──────┐┌─────┴─────┐┌──────┴───────┐\n",
       "q_4: ┤ RY(9π/16) ├┤ RY(-π/216) ├┤ RY(-π/108) ├┤ RY(-π/27) ├┤ RY(-0.23271) ├\n",
       "     └───────────┘└────────────┘└────────────┘└───────────┘└──────────────┘
" ], "text/plain": [ " \n", "q_0: ───────────────────■──────────────────────────────────────────────────\n", " │ \n", "q_1: ───────────────────┼─────────────■────────────────────────────────────\n", " │ │ \n", "q_2: ───────────────────┼─────────────┼─────────────■──────────────────────\n", " │ │ │ \n", "q_3: ───────────────────┼─────────────┼─────────────┼─────────────■────────\n", " ┌───────────┐┌─────┴──────┐┌─────┴──────┐┌─────┴─────┐┌──────┴───────┐\n", "q_4: ┤ RY(9π/16) ├┤ RY(-π/216) ├┤ RY(-π/108) ├┤ RY(-π/27) ├┤ RY(-0.23271) ├\n", " └───────────┘└────────────┘└────────────┘└───────────┘└──────────────┘" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fixed_income.draw()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
     ┌───────┐┌────┐\n",
       "q_0: ┤0      ├┤0   ├\n",
       "     │       ││    │\n",
       "q_1: ┤1      ├┤1   ├\n",
       "     │  P(X) ││    │\n",
       "q_2: ┤2      ├┤2 F ├\n",
       "     │       ││    │\n",
       "q_3: ┤3      ├┤3   ├\n",
       "     └───────┘│    │\n",
       "q_4: ─────────┤4   ├\n",
       "              └────┘
" ], "text/plain": [ " ┌───────┐┌────┐\n", "q_0: ┤0 ├┤0 ├\n", " │ ││ │\n", "q_1: ┤1 ├┤1 ├\n", " │ P(X) ││ │\n", "q_2: ┤2 ├┤2 F ├\n", " │ ││ │\n", "q_3: ┤3 ├┤3 ├\n", " └───────┘│ │\n", "q_4: ─────────┤4 ├\n", " └────┘" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "state_preparation = QuantumCircuit(fixed_income.num_qubits)\n", "\n", "# load probability distribution\n", "state_preparation.append(u, range(u.num_qubits))\n", "\n", "# apply function\n", "state_preparation.append(fixed_income, range(fixed_income.num_qubits))\n", "\n", "state_preparation.draw()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:30.566677Z", "start_time": "2020-07-13T23:39:30.561554Z" } }, "outputs": [], "source": [ "# set target precision and confidence level\n", "epsilon = 0.01\n", "alpha = 0.05\n", "\n", "# set objective qubit\n", "objective = u.num_qubits\n", "\n", "# construct amplitude estimation \n", "ae = IterativeAmplitudeEstimation(epsilon=epsilon, alpha=alpha, \n", " state_preparation=state_preparation,\n", " objective_qubits=[objective],\n", " post_processing=fixed_income.post_processing)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:53.292025Z", "start_time": "2020-07-13T23:39:30.882045Z" } }, "outputs": [], "source": [ "result = ae.run(quantum_instance=Aer.get_backend('qasm_simulator'), shots=100)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:53.298201Z", "start_time": "2020-07-13T23:39:53.294221Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Exact value: \t2.1942\n", "Estimated value: \t2.3404\n", "Confidence interval:\t[2.3094, 2.3714]\n" ] } ], "source": [ "conf_int = np.array(result['confidence_interval'])\n", "print('Exact value: \\t%.4f' % exact_value)\n", "print('Estimated value: \\t%.4f' % (result['estimation']))\n", "print('Confidence interval:\\t[%.4f, %.4f]' % tuple(conf_int))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2020-07-13T23:39:53.845834Z", "start_time": "2020-07-13T23:39:53.687281Z" } }, "outputs": [ { "data": { "text/html": [ "

Version Information

Qiskit SoftwareVersion
Qiskit0.23.3
Terra0.16.2
Aer0.7.3
Ignis0.5.1
Aqua0.8.1
IBM Q Provider0.11.1
System information
Python3.8.5 (default, Sep 4 2020, 07:30:14) \n", "[GCC 7.3.0]
OSLinux
CPUs2
Memory (Gb)3.736370086669922
Thu Jan 28 13:33:57 2021 IST
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "

This code is a part of Qiskit

© Copyright IBM 2017, 2021.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import qiskit.tools.jupyter\n", "%qiskit_version_table\n", "%qiskit_copyright" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 1 }