# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Piecewise-polynomially-controlled Pauli rotations."""
from __future__ import annotations
from typing import List, Optional
import numpy as np
from qiskit.circuit import QuantumRegister, AncillaRegister, QuantumCircuit
from qiskit.circuit.exceptions import CircuitError
from .functional_pauli_rotations import FunctionalPauliRotations
from .polynomial_pauli_rotations import PolynomialPauliRotations
from .integer_comparator import IntegerComparator
[docs]class PiecewisePolynomialPauliRotations(FunctionalPauliRotations):
r"""Piecewise-polynomially-controlled Pauli rotations.
This class implements a piecewise polynomial (not necessarily continuous) function,
:math:`f(x)`, on qubit amplitudes, which is defined through breakpoints and coefficients as
follows.
Suppose the breakpoints :math:`(x_0, ..., x_J)` are a subset of :math:`[0, 2^n-1]`, where
:math:`n` is the number of state qubits. Further on, denote the corresponding coefficients by
:math:`[a_{j,1},...,a_{j,d}]`, where :math:`d` is the highest degree among all polynomials.
Then :math:`f(x)` is defined as:
.. math::
f(x) = \begin{cases}
0, x < x_0 \\
\sum_{i=0}^{i=d}a_{j,i}/2 x^i, x_j \leq x < x_{j+1}
\end{cases}
where if given the same number of breakpoints as polynomials, we implicitly assume
:math:`x_{J+1} = 2^n`.
.. note::
Note the :math:`1/2` factor in the coefficients of :math:`f(x)`, this is consistent with
Qiskit's Pauli rotations.
Examples:
>>> from qiskit import QuantumCircuit
>>> from qiskit.circuit.library.arithmetic.piecewise_polynomial_pauli_rotations import\
... PiecewisePolynomialPauliRotations
>>> qubits, breakpoints, coeffs = (2, [0, 2], [[0, -1.2],[-1, 1, 3]])
>>> poly_r = PiecewisePolynomialPauliRotations(num_state_qubits=qubits,
...breakpoints=breakpoints, coeffs=coeffs)
>>>
>>> qc = QuantumCircuit(poly_r.num_qubits)
>>> qc.h(list(range(qubits)));
>>> qc.append(poly_r.to_instruction(), list(range(qc.num_qubits)));
>>> qc.draw()
┌───┐┌──────────┐
q_0: ┤ H ├┤0 ├
├───┤│ │
q_1: ┤ H ├┤1 ├
└───┘│ │
q_2: ─────┤2 ├
│ pw_poly │
q_3: ─────┤3 ├
│ │
q_4: ─────┤4 ├
│ │
q_5: ─────┤5 ├
└──────────┘
References:
[1]: Haener, T., Roetteler, M., & Svore, K. M. (2018).
Optimizing Quantum Circuits for Arithmetic.
`arXiv:1805.12445 <http://arxiv.org/abs/1805.12445>`_
[2]: Carrera Vazquez, A., Hiptmair, R., & Woerner, S. (2022).
Enhancing the Quantum Linear Systems Algorithm using Richardson Extrapolation.
`ACM Transactions on Quantum Computing 3, 1, Article 2 <https://doi.org/10.1145/3490631>`_
"""
def __init__(
self,
num_state_qubits: Optional[int] = None,
breakpoints: Optional[List[int]] = None,
coeffs: Optional[List[List[float]]] = None,
basis: str = "Y",
name: str = "pw_poly",
) -> None:
"""
Args:
num_state_qubits: The number of qubits representing the state.
breakpoints: The breakpoints to define the piecewise-linear function.
Defaults to ``[0]``.
coeffs: The coefficients of the polynomials for different segments of the
piecewise-linear function. ``coeffs[j][i]`` is the coefficient of the i-th power of x
for the j-th polynomial.
Defaults to linear: ``[[1]]``.
basis: The type of Pauli rotation (``'X'``, ``'Y'``, ``'Z'``).
name: The name of the circuit.
"""
# store parameters
self._breakpoints = breakpoints if breakpoints is not None else [0]
self._coeffs = coeffs if coeffs is not None else [[1]]
# store a list of coefficients as homogeneous polynomials adding 0's where necessary
self._hom_coeffs = []
self._degree = len(max(self._coeffs, key=len)) - 1
for poly in self._coeffs:
self._hom_coeffs.append(poly + [0] * (self._degree + 1 - len(poly)))
super().__init__(num_state_qubits=num_state_qubits, basis=basis, name=name)
@property
def breakpoints(self) -> List[int]:
"""The breakpoints of the piecewise polynomial function.
The function is polynomial in the intervals ``[point_i, point_{i+1}]`` where the last
point implicitly is ``2**(num_state_qubits + 1)``.
Returns:
The list of breakpoints.
"""
if (
self.num_state_qubits is not None
and len(self._breakpoints) == len(self.coeffs)
and self._breakpoints[-1] < 2**self.num_state_qubits
):
return self._breakpoints + [2**self.num_state_qubits]
return self._breakpoints
@breakpoints.setter
def breakpoints(self, breakpoints: List[int]) -> None:
"""Set the breakpoints.
Args:
breakpoints: The new breakpoints.
"""
self._invalidate()
self._breakpoints = breakpoints
if self.num_state_qubits and breakpoints:
self._reset_registers(self.num_state_qubits)
@property
def coeffs(self) -> List[List[float]]:
"""The coefficients of the polynomials.
Returns:
The polynomial coefficients per interval as nested lists.
"""
return self._coeffs
@coeffs.setter
def coeffs(self, coeffs: List[List[float]]) -> None:
"""Set the polynomials.
Args:
coeffs: The new polynomials.
"""
self._invalidate()
self._coeffs = coeffs
# update the homogeneous polynomials and degree
self._hom_coeffs = []
self._degree = len(max(self._coeffs, key=len)) - 1
for poly in self._coeffs:
self._hom_coeffs.append(poly + [0] * (self._degree + 1 - len(poly)))
if self.num_state_qubits and coeffs:
self._reset_registers(self.num_state_qubits)
@property
def mapped_coeffs(self) -> List[List[float]]:
"""The coefficients mapped to the internal representation, since we only compare
x>=breakpoint.
Returns:
The mapped coefficients.
"""
mapped_coeffs = []
# First polynomial
mapped_coeffs.append(self._hom_coeffs[0])
for i in range(1, len(self._hom_coeffs)):
mapped_coeffs.append([])
for j in range(0, self._degree + 1):
mapped_coeffs[i].append(self._hom_coeffs[i][j] - self._hom_coeffs[i - 1][j])
return mapped_coeffs
@property
def contains_zero_breakpoint(self) -> bool | np.bool_:
"""Whether 0 is the first breakpoint.
Returns:
True, if 0 is the first breakpoint, otherwise False.
"""
return np.isclose(0, self.breakpoints[0])
[docs] def evaluate(self, x: float) -> float:
"""Classically evaluate the piecewise polynomial rotation.
Args:
x: Value to be evaluated at.
Returns:
Value of piecewise polynomial function at x.
"""
y = 0
for i in range(0, len(self.breakpoints)):
y = y + (x >= self.breakpoints[i]) * (np.poly1d(self.mapped_coeffs[i][::-1])(x))
return y
def _check_configuration(self, raise_on_failure: bool = True) -> bool:
"""Check if the current configuration is valid."""
valid = True
if self.num_state_qubits is None:
valid = False
if raise_on_failure:
raise AttributeError("The number of qubits has not been set.")
if self.num_qubits < self.num_state_qubits + 1:
valid = False
if raise_on_failure:
raise CircuitError(
"Not enough qubits in the circuit, need at least "
"{}.".format(self.num_state_qubits + 1)
)
if len(self.breakpoints) != len(self.coeffs) + 1:
valid = False
if raise_on_failure:
raise ValueError("Mismatching number of breakpoints and polynomials.")
return valid
def _reset_registers(self, num_state_qubits: Optional[int]) -> None:
"""Reset the registers."""
self.qregs = []
if num_state_qubits:
qr_state = QuantumRegister(num_state_qubits)
qr_target = QuantumRegister(1)
self.qregs = [qr_state, qr_target]
# Calculate number of ancilla qubits required
num_ancillas = num_state_qubits + 1
if self.contains_zero_breakpoint:
num_ancillas -= 1
if num_ancillas > 0:
qr_ancilla = AncillaRegister(num_ancillas)
self.add_register(qr_ancilla)
def _build(self):
"""If not already built, build the circuit."""
if self._is_built:
return
super()._build()
circuit = QuantumCircuit(*self.qregs, name=self.name)
qr_state = circuit.qubits[: self.num_state_qubits]
qr_target = [circuit.qubits[self.num_state_qubits]]
# Ancilla for the comparator circuit
qr_ancilla = circuit.qubits[self.num_state_qubits + 1 :]
# apply comparators and controlled linear rotations
for i, point in enumerate(self.breakpoints[:-1]):
if i == 0 and self.contains_zero_breakpoint:
# apply rotation
poly_r = PolynomialPauliRotations(
num_state_qubits=self.num_state_qubits,
coeffs=self.mapped_coeffs[i],
basis=self.basis,
)
circuit.append(poly_r.to_gate(), qr_state[:] + qr_target)
else:
# apply Comparator
comp = IntegerComparator(num_state_qubits=self.num_state_qubits, value=point)
qr_state_full = qr_state[:] + [qr_ancilla[0]] # add compare qubit
qr_remaining_ancilla = qr_ancilla[1:] # take remaining ancillas
circuit.append(
comp.to_gate(), qr_state_full[:] + qr_remaining_ancilla[: comp.num_ancillas]
)
# apply controlled rotation
poly_r = PolynomialPauliRotations(
num_state_qubits=self.num_state_qubits,
coeffs=self.mapped_coeffs[i],
basis=self.basis,
)
circuit.append(
poly_r.to_gate().control(), [qr_ancilla[0]] + qr_state[:] + qr_target
)
# uncompute comparator
circuit.append(
comp.to_gate().inverse(),
qr_state_full[:] + qr_remaining_ancilla[: comp.num_ancillas],
)
self.append(circuit.to_gate(), self.qubits)