# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Disassemble function for a qobj into a list of circuits and its config"""
from typing import Any, Dict, List, NewType, Tuple, Union
import collections
import math
from qiskit import pulse
from qiskit.circuit.classicalregister import ClassicalRegister
from qiskit.circuit.instruction import Instruction
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.quantumregister import QuantumRegister
from qiskit.qobj import PulseQobjInstruction
from qiskit.qobj.converters import QobjToInstructionConverter
# A ``CircuitModule`` is a representation of a circuit execution on the backend.
# It is currently a list of quantum circuits to execute, a run Qobj dictionary
# and a header dictionary.
CircuitModule = NewType(
"CircuitModule", Tuple[List[QuantumCircuit], Dict[str, Any], Dict[str, Any]]
)
# A ``PulseModule`` is a representation of a pulse execution on the backend.
# It is currently a list of pulse schedules to execute, a run Qobj dictionary
# and a header dictionary.
PulseModule = NewType("PulseModule", Tuple[List[pulse.Schedule], Dict[str, Any], Dict[str, Any]])
# Prevent the disassembler from accessing deprecated circuit methods. This can happen for
# gates where the name of the gate matches a circuit method (e.g. Isometry.name is "isometry")
# and the circuit attribute is also QuantumCircuit.isometry
_DEPRECATED_CIRCUIT_METHODS = {
"isometry",
"snapshot",
"ucrx",
"ucry",
"ucrz",
"squ",
"diagonal",
"hamiltonian",
}
[docs]def disassemble(qobj) -> Union[CircuitModule, PulseModule]:
"""Disassemble a qobj and return the circuits or pulse schedules, run_config, and user header.
.. note::
``disassemble(assemble(qc))`` is not guaranteed to produce an exactly equal circuit to the
input, due to limitations in the :obj:`.QasmQobj` format that need to be maintained for
backend system compatibility. This is most likely to be the case when using newer features
of :obj:`.QuantumCircuit`. In most cases, the output should be equivalent, if not quite
equal.
Args:
qobj (Qobj): The input qobj object to disassemble
Returns:
Union[CircuitModule, PulseModule]: The disassembled program which consists of:
* programs: A list of quantum circuits or pulse schedules
* run_config: The dict of the run config
* user_qobj_header: The dict of any user headers in the qobj
Examples:
.. code-block:: python
from qiskit.circuit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.compiler.assembler import assemble
from qiskit.assembler.disassemble import disassemble
# Create a circuit to assemble into a qobj
q = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.cx(q[0], q[1])
qc.measure(q, c)
# Assemble the circuit into a Qobj
qobj = assemble(qc, shots=2000, memory=True)
# Disassemble the qobj back into a circuit
circuits, run_config_out, headers = disassemble(qobj)
"""
if qobj.type == "PULSE":
return _disassemble_pulse_schedule(qobj)
else:
return _disassemble_circuit(qobj)
def _disassemble_circuit(qobj) -> CircuitModule:
run_config = qobj.config.to_dict()
# convert lo freq back to Hz
qubit_lo_freq = run_config.get("qubit_lo_freq", [])
if qubit_lo_freq:
run_config["qubit_lo_freq"] = [freq * 1e9 for freq in qubit_lo_freq]
meas_lo_freq = run_config.get("meas_lo_freq", [])
if meas_lo_freq:
run_config["meas_lo_freq"] = [freq * 1e9 for freq in meas_lo_freq]
user_qobj_header = qobj.header.to_dict()
return CircuitModule((_experiments_to_circuits(qobj), run_config, user_qobj_header))
def _qobj_to_circuit_cals(qobj, pulse_lib):
"""Return circuit calibrations dictionary from qobj/exp config calibrations."""
qobj_cals = qobj.config.calibrations.to_dict()["gates"]
converter = QobjToInstructionConverter(pulse_lib)
qc_cals = {}
for gate in qobj_cals:
config = (tuple(gate["qubits"]), tuple(gate["params"]))
cal = {
config: pulse.Schedule(
name="{} {} {}".format(gate["name"], str(gate["params"]), str(gate["qubits"]))
)
}
for instruction in gate["instructions"]:
qobj_instruction = PulseQobjInstruction.from_dict(instruction)
schedule = converter(qobj_instruction)
cal[config] = cal[config].insert(schedule.ch_start_time(), schedule)
if gate["name"] in qc_cals:
qc_cals[gate["name"]].update(cal)
else:
qc_cals[gate["name"]] = cal
return qc_cals
def _experiments_to_circuits(qobj):
"""Return a list of QuantumCircuit object(s) from a qobj.
Args:
qobj (Qobj): The Qobj object to convert to QuantumCircuits
Returns:
list: A list of QuantumCircuit objects from the qobj
"""
if not qobj.experiments:
return None
circuits = []
for exp in qobj.experiments:
quantum_registers = [QuantumRegister(i[1], name=i[0]) for i in exp.header.qreg_sizes]
classical_registers = [ClassicalRegister(i[1], name=i[0]) for i in exp.header.creg_sizes]
circuit = QuantumCircuit(*quantum_registers, *classical_registers, name=exp.header.name)
qreg_dict = collections.OrderedDict()
creg_dict = collections.OrderedDict()
for reg in quantum_registers:
qreg_dict[reg.name] = reg
for reg in classical_registers:
creg_dict[reg.name] = reg
conditional = {}
for i in exp.instructions:
name = i.name
qubits = []
params = getattr(i, "params", [])
try:
for qubit in i.qubits:
qubit_label = exp.header.qubit_labels[qubit]
qubits.append(qreg_dict[qubit_label[0]][qubit_label[1]])
except Exception: # pylint: disable=broad-except
pass
clbits = []
try:
for clbit in i.memory:
clbit_label = exp.header.clbit_labels[clbit]
clbits.append(creg_dict[clbit_label[0]][clbit_label[1]])
except Exception: # pylint: disable=broad-except
pass
# TODO remove the check that name is not in the deprecated circuit methods
# once the methods have been removed
if hasattr(circuit, name) and name not in _DEPRECATED_CIRCUIT_METHODS:
instr_method = getattr(circuit, name)
if i.name == "initialize":
_inst = instr_method(params, qubits)
elif i.name in ["mcx", "mcu1", "mcp"]:
_inst = instr_method(*params, qubits[:-1], qubits[-1], *clbits)
else:
_inst = instr_method(*params, *qubits, *clbits)
elif name == "bfunc":
conditional["value"] = int(i.val, 16)
full_bit_size = sum(creg_dict[x].size for x in creg_dict)
mask_map = {}
raw_map = {}
raw = []
for creg in creg_dict:
size = creg_dict[creg].size
reg_raw = [1] * size
if not raw:
raw = reg_raw
else:
for pos, val in enumerate(raw):
if val == 1:
raw[pos] = 0
raw = reg_raw + raw
mask = [0] * (full_bit_size - len(raw)) + raw
raw_map[creg] = mask
mask_map[int("".join(str(x) for x in mask), 2)] = creg
if bin(int(i.mask, 16)).count("1") == 1:
# The condition is on a single bit. This might be a single-bit condition, or it
# might be a register of length one. The case that it's a single-bit condition
# in a register of length one is ambiguous, and we choose to return a condition
# on the register. This may not match the input circuit exactly, but is at
# least equivalent.
cbit = int(math.log2(int(i.mask, 16)))
for reg in creg_dict.values():
size = reg.size
if cbit >= size:
cbit -= size
else:
conditional["register"] = reg if reg.size == 1 else reg[cbit]
break
mask_str = bin(int(i.mask, 16))[2:].zfill(full_bit_size)
mask = [int(item) for item in list(mask_str)]
else:
creg = mask_map[int(i.mask, 16)]
conditional["register"] = creg_dict[creg]
mask = raw_map[creg]
val = int(i.val, 16)
for j in reversed(mask):
if j == 0:
val = val >> 1
else:
conditional["value"] = val
break
else:
_inst = temp_opaque_instruction = Instruction(
name=name, num_qubits=len(qubits), num_clbits=len(clbits), params=params
)
circuit.append(temp_opaque_instruction, qubits, clbits)
if conditional and name != "bfunc":
_inst.c_if(conditional["register"], conditional["value"])
conditional = {}
pulse_lib = qobj.config.pulse_library if hasattr(qobj.config, "pulse_library") else []
# The dict update method did not work here; could investigate in the future
if hasattr(qobj.config, "calibrations"):
circuit.calibrations = dict(
**circuit.calibrations, **_qobj_to_circuit_cals(qobj, pulse_lib)
)
if hasattr(exp.config, "calibrations"):
circuit.calibrations = dict(
**circuit.calibrations, **_qobj_to_circuit_cals(exp, pulse_lib)
)
circuits.append(circuit)
return circuits
def _disassemble_pulse_schedule(qobj) -> PulseModule:
run_config = qobj.config.to_dict()
run_config.pop("pulse_library")
qubit_lo_freq = run_config.get("qubit_lo_freq")
if qubit_lo_freq:
run_config["qubit_lo_freq"] = [freq * 1e9 for freq in qubit_lo_freq]
meas_lo_freq = run_config.get("meas_lo_freq")
if meas_lo_freq:
run_config["meas_lo_freq"] = [freq * 1e9 for freq in meas_lo_freq]
user_qobj_header = qobj.header.to_dict()
# extract schedule lo settings
schedule_los = []
for program in qobj.experiments:
program_los = {}
if hasattr(program, "config"):
if hasattr(program.config, "qubit_lo_freq"):
for i, lo in enumerate(program.config.qubit_lo_freq):
program_los[pulse.DriveChannel(i)] = lo * 1e9
if hasattr(program.config, "meas_lo_freq"):
for i, lo in enumerate(program.config.meas_lo_freq):
program_los[pulse.MeasureChannel(i)] = lo * 1e9
schedule_los.append(program_los)
if any(schedule_los):
run_config["schedule_los"] = schedule_los
return PulseModule((_experiments_to_schedules(qobj), run_config, user_qobj_header))
def _experiments_to_schedules(qobj) -> List[pulse.Schedule]:
"""Return a list of :class:`qiskit.pulse.Schedule` object(s) from a qobj.
Args:
qobj (Qobj): The Qobj object to convert to pulse schedules.
Returns:
A list of :class:`qiskit.pulse.Schedule` objects from the qobj
Raises:
pulse.PulseError: If a parameterized instruction is supplied.
"""
converter = QobjToInstructionConverter(qobj.config.pulse_library)
schedules = []
for program in qobj.experiments:
insts = []
for inst in program.instructions:
insts.append(converter(inst))
schedule = pulse.Schedule(*insts)
schedules.append(schedule)
return schedules